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Abstract
This paper presents new methods for training large neural networks for phoneme
probabilit y estimation. An architecture combining time-delay windows and
recurrent connections is used to capture the important dynamic information of the
speech signal. Because the number of connections in a fully connected recurrent
network grows super-linear with the number of hidden units, schemes for sparse
connection and connection pruning are explored. It is found that sparsely
connected networks outperform their fully connected counterparts with an equal
number of connections. The implementation of the combined architecture and
training scheme is described in detail . The networks are evaluated in a hybrid
HMM/ANN system for phoneme recognition on the TIMIT database, and for
word recognition on the WAXHOLM database. The achieved phone error-rate,
27.8%, for the standard 39 phoneme set on the core test-set of the TIMIT database
is in the range of the lowest reported. All training and simulation software used is
made freely available by the author, and detailed information about the software
and the training process is given in an Appendix.
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1 Introduction
Speech recognition was one of the first problems that artificial neural networks (ANNs) were
applied to during the rapid spread of ANN models in the 1980’s. ANNs have been used for
recognition of large units li ke words directly (e.g. Ström, 1992; English and Boggess, 1992;
Li, Naylor, and Rossen, 1992), but attempts to recognize smaller units li ke phonemes have
been more successful. Several different methods exist for combining the ANN classification
of sub-units into sequences that constitutes words. A few of the more well -known methods
are: “Hybrid HMM/ANN Architecture” (Bourlard and Wellekens, 1988), “Linked Predictive
Neural Networks” (Tebelskis and Waibel, 1990),  “Hidden Control Neural Architecture”
(Levin, 1990), and “Stochastic Observation HMM” (Mitchel, Harper, and Jamieson, 1996). Of
the mentioned methods, the hybrid HMM/ANN architecture is the most wide-spread today.

ANN systems undisputedly solve some problems better than all other methods in automatic
speech recognition. The phoneme recognition rate on the TIMIT database reported by
Robinson (1994) is several percent higher than that of all other systems – a large difference for
this type of test (a comparison of different approaches is given in Table 3, section 5.1). ANN
solutions are also typically compact, i.e., have a small number of parameters, and offer fast
decoding compared to standard HMM systems. Still , for the last years, the research activities
on ANNs for speech recognition have not by far been as intensive as for the prevaili ng HMM
paradigm. Preference for a well -established technology and the relatively few equally
excellent results reported on the word-level are possible reasons for the mild interest in ANN
solutions. However, the evaluation of the SQALE-project (Steeneken and van Leeuwen, 1995)
is an example of a case where hybrid HMM/ANN technology significantly outperforms state-
of-the-art HMM systems provided by leading research sites for large vocabulary tasks.

A different reason for the limited spread of ANN solutions can be problems with the
network training, i.e., eff iciently and robustly determining the parameters of large networks.
For example, the recurrent network used by Robinson is trained with special parallel
hardware, and a rather complex training heuristic is used with several ad hoc parameters to be
determined empirically. Recurrent connections are of course not the only path to good results,
but other existing solutions have different problems. An ANN architecture without recurrent
connections is used with good results by Bourlard and Morgan (1993). Instead they use time-
delay windows (Waibel et al., 1987) to capture the temporal cues of the speech signal. The
lack of recurrent connections make the training algorithm more robust, but very large
networks are used to achieve good results, and therefore the available computing resources
limit the performance of the system.

Contemporary high performing ANN solutions typically require more computation for
training than the wide-spread maximum likelihood (ML) training for the standard HMM
(Rabiner and Juang, 1993; Lee, 1989). Comparing standard HMM and hybrid HMM/ANN
training in more detail , a difference in computational complexity can be noted. The amount of
computation increases faster for ANN training when the size of the model is increased. When
more training data is available for training an HMM system, typically more context-dependent
models are introduced. However, in a somewhat simpli fied view1, the training time is
independent of the number of models, and proportional to the amount of training data. This is
because each model is trained only on a partition of the data. In the case of an ANN system,
the capacity is determined by the number of hidden units, and when more training data is

                                                
1 This is not true if the free parameters of the HMM are increased by some other means, e.g., increasing the
number of components per Gaussian mixture. We have also made the approximation that the Baum-Welsh
algorithm converges in the same number of iterations independent of the size of the training data, and on the
number of context dependent models.
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available, more hidden units are typically introduced. The computation for training increases
faster than for HMM training, because the entire ANN is trained on all data. Again in a
simpli fied view2, the training time is proportional to the product of the amount of training data
and the size of the ANN (the number of connections). Thus, in comparison with HMM
training, the amount of computation for ANN training is more dependent on the model size. In
particular for recurrent networks this is a problem because the number of recurrent
connections grows quadratically with the number of hidden units.

In part, the scaling properties of ANN training originate from the inherent discriminative
nature of the training, but this is not the whole truth. In this paper we propose new methods
for robust training of large, high performance ANNs based on sparsely connected networks. In
a sparsely connected ANN, the hidden layer can be allowed to grow without necessarily
increasing the number of connections proportionally. The problem with the quadratic relation
between units and connections in recurrent networks is addressed by introducing local
connectivity for the recurrent connections. The local connectivity has the effect that units
close to each other have higher li kelihood of being connected. Thus, it promotes the
development of groups of units performing sub-tasks of the problem. The sparse connection
schemes used, and a related concept, connection pruning, are discussed in section 4. In section
2, a review of the theory of feed-forward ANNs is given together with the definition of the
particular network architecture used in this paper, and details of the training algorithm.
Recognition results on the TIMIT and WAXHOLM databases are reported in section 5.

The HMM paradigm has currently the advantage of a large mature body of easily available
software (e.g., Young et al., 1995). To promote further development in the hybrid HMM/ANN
field, and to make reproduction of our results easier, the software toolkit used for training and
running the neural networks of this study is made freely available. In the appendix, the
software is described and instructions on how to obtain a copy are given. Information about
the simulations of this study is given in detail to make reproduction of the results possible.

2 Basic theory
This section describes the basic theory behind the dynamic feed-forward artificial neural
networks used in the study. Because we wish to make replication of the results straight-
forward, the description is rather detailed. Most of the material is well -known background-
knowledge, covered in textbooks on ANN computing (e.g., Bishop, 1995 or Ripley, 1996).
Details of the unified implementation of recurrent units and time-delay windows (Section 2.2)
as well as the introduction of multiplication units and units with several different non-
linearities can be of interest also for readers with some experience in the field.

2.1 Feed-forward networks

Feed-forward networks are directed acyclic graphs, i.e., the activities of all artificial neurons,
hereafter called units, can be computed in one iteration, and there is no feedback that would
make the activation of a unit depend recursively on its own value. A network consists of input
units, hidden units and output units and connections between them. In the popular analogy
with a biological nerve-system, the input units are “sensors” whose values are determined by
“ the environment” , the hidden units corresponds to internal neurons and the output units can
be thought of as neurons of a motor system, controlli ng the organism’s responses to the input
from the environment. This analogy can be very inspiring, but in practice feed-forward ANNs
are used simply to approximate complex input/output maps, with no known explicit formula

                                                
2 This is true only if the number of training epochs needed for convergence of the training is independent of the
ANN’s size, and on the amount of training data. This matter is discussed further in section 5.1.5.
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but a great deal of characterizing data. The strength of ANN models is the weak constraints
they put on the mapping; It has been shown that, given a suff icient number of hidden units and
characterizing data, feed-forward ANNs with one layer of hidden units can approximate any
bounded function on a compact set with arbitrary accuracy (e.g., Hornik, Stinchcombe and
White 1989). In practice however, the performance is limited due to: i) problems finding the
set of connection weights that gives the optimal network and ii) the size of the available
database.

In this paper we concentrate on mappings defining a “1-of-N” classification of the input
patterns. Each input pattern of the training database is assigned to one of N classes. The target
values for the N output units are -1.0 for all units except the one corresponding to the correct
class whose target is +1.0. The N classes are the phonemes and the input patterns are feature
representations of the short-time spectra of the sound wave. This will be covered more
thoroughly in section 3.

Except for some special units, activities in our framework are computed in the same way as
the classic ANNs of (Rumelhart, Hinton and Willi ams, 1986), but the sigmoid function is
replaced by the computationally more convenient tanhyp function. Thus, for the tanhyp units,
the activation ai of unit i is defined by:

( )a neti i= tanh  (1)

where

net w ai ji j
j

= ∑  (2)

and wji is the connection weight from unit j to unit i. It is easy to show that besides the change
to an activation function with a symmetric range [-1;1], this is equivalent to a linear
transformation of the weight space. The tanhyp function can be expanded as follows:
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where RHW indicates parameters of the classic network, transforms a classic network based
on sigmoid units to a network with tanhyp non-linearity.

It is sometimes convenient to work also with units without any non-linearity and units with
other non-linearities. Because these units are not defined in the classical networks, the weights
of connections to them are not affected by the transformation between our activities and the
classical RHW domain of  (4). In the experiments of this study we use linear units, exponential
units, inverter units (1/x) and multiplication units in addition to the usual tanhyp and input
units. Moreover, each network has one special-purpose unit that has a constant activity of 1.0.
Connections are by default added from this unit to all tanhyp units – the effect is identical to
that of a unit-bias. Multiplication units are slightly more complicated than the other types and
require the computation of (6) instead of  (2). In summary, unit activities are computed by



Nikko Ström, Phoneme Probability Estimation with Dynamic Sparsely Connected Artificial Neural Networks

6

( )

( )

a net i

a net i

a i

a clamped i

a net  i

a net  i

a prod  i

i i

i i

i

i

i i

i i

i i

=

=

=

=

=

=

=
























tanh

.

exp

/

if unit  is a tanhyp unit

if unit  is a linear unit

if unit  is the bias unit

if unit  is an input unit

if unit  is an exponential unit

if unit  is an inverter unit

if unit  is a multiplication unit

10

1

 (5)

where

prod ai j
j j i
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(6)

in analogy with  (2).
The target values for the output units are 1.0 for the unit corresponding to the correct class

and -1.0 for all other units. The objective function for the back-propagation training is based
on the cross-entropy distance in the RHW domain (Solla, Levin, and Fleisher, 1988). If the
target output activation for unit i is τi,RWH in the RHW domain, the contribution, ei, to the cross
entropy transformed to the tanhyp domain can be computed from  (4):
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The objective function, E, is the sum of ei for all units and input patterns, so the derivative
with respect to the activity is

( )
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(8)

Now we compute the derivative with respect to the connection weights in the standard way
using the chain rule to get the recursive equations:
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and the derivatives with respect to the weights are:

∂
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The derivatives of  (11) can be used for gradient decent type minimization of E. The details of
this are filled out in section 2.4.

Note that if an output unit has no out-flowing connections, then dE/dai cancels one of the
factors of δi in (9), and the resulting δi is simply the difference between ai and the target (+1.0
for the correct class and -1.0 otherwise).

2.2 Recurrent connections and time-delay

Dynamic features of speech such as formant movements, that are known to be of importance
for phoneme classification (e.g., Fant 1969), are not captured by the short time spectrum
representation used as input to the network. Therefore, phonetic classification of short-time
spectra can be greatly enhanced by considering also the context of neighboring spectra. A step
in this direction was taken by Waibel et al. (1987) when they introduced time-delay neural
networks (TDNN). In this paper we denote by TDNN, all network architectures where the
units are connected to units in lower layers with time-delayed connections so that the activities
depends on the activities of lower layer units in a finite time-delay window (Figure 1 (left)).
The first experiments with TDNN successfully showed an improved classification of stop
consonants where it is well known that the dynamic formant patterns are of great importance.
Later the architecture has been successfully applied to complete phoneme inventories and used
in hybrid HMM/ANN speech recognition systems with good results (e.g., Bourlard and
Morgan, 1993; Cohen et al., 1992).

A different course to include the context in the classification is to connect units in the same
layer with a delay of one time-step – so called recurrent connections (Figure 1 (middle)). The
network still remains a feed-forward network because the recurrent connections are delayed.
This approach differs from TDNN in that the activity of a unit at a particular time depends
recursively on activities in its layer and lower layer at all previous times. Networks with
recurrent connections are called recurrent neural networks (RNN) (Rumelhart, Hinton and
Willi ams, 1986) or dynamic neural networks (Pearlmutter, 1990) and this is currently the most
successful architecture for phoneme recognition (Robinson and Fallside, 1991; Robinson,
1994).

TDNNs and RNNs have much in common; in particular, both use time-delayed
connections to incorporate context into the classification. In fact, if the connections of RNNs
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are allowed to have multiple time-delays instead of just one time-step, the resulting network
has all the modeling power of both architectures. This unified architecture, RTDNN
(Recurrent Time-Delay Neural Network) introduced by Ström (1992), is used in this study
(Figure 1 (right)).

The delayed connections have the effect that the response of an input pattern is delayed
several time-points in the output units. One feasible way to tackle this problem is to delay also
the target values for the output units (Robinsson and Fallside, 1991; Robinsson 1994). In the
RTDNN framework, we have chosen to use look-ahead connections instead of delaying the
targets. Look-ahead connections let a unit depend on the activity of other units at future times
(indicated by a positive superscript, e.g., z+1, in Figure 1). This concept is often used in TDNN
architectures, but not possible to implement in RNN architectures because recurrent
connections must be delayed in feed-forward networks. Look-ahead connections force the
computation of some unit activities to be delayed, but the network is still a feed-forward
network as long as no unit’s activity at a particular time depends on its own activity.

z+1z-1

z-1 z+1 z+2

z-1z-1

z-1z-2z-3

z-1

z+1 z+2 z+3

z+1

input

output

input

output

input

output

Figure 1. Different types of dynamic networks. The z-x operator indicates that the connection
is delayed x time-frames. For simplicity, the input, hidden, and output layers have only one
unit each in this figure.

Left: time-delay network (TDNN). The units in higher layers have access to a time-delay
window of the activities of units in lower layers. Note that both time-delay and look-ahead
(z+x) connections are used. A consequence of this is that computation of activities in units in
higher layers must be delayed until the activities of the look-ahead connections are known.

Middle: Recurrent network (RNN). The hidden units are recurrently connected back to the
hidden layer. In this architecture, the activities recursively depend on the activities of all
previous time-frames.

Right: The combined architecture (RTDNN) with both time-delay windows, and recurrent
connections.

It is not hard to show that any feed-forward network with look-ahead connections has an
equivalent network with no look-ahead, but delayed targets instead. In the pseudo-code of
Table 1 we show this by constructing such an equivalent network, and in the process we also
get the order in which unit activities must be computed. In fact, the constructed equivalent
network is the one used in the actual computer simulations.

The reason for introducing the extra complication of working with two separate network
representations is that look-ahead connections are more intuitive and simpli fy the network
design. For example, if one decides to use a wider time-delay window or change the dynamic
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structure in some other way, it is unnecessary to select or compute a new appropriate delay for
the target values. This is instead handled automatically in the conversion process outlined in
Table 1. In the simulations, the target values are delayed because that is the computationally
most advantageous representation, but this is hidden from the network designer who can focus
on selecting a dynamic structure suitable for the particular problem.

The equations of section 2.1 must be generalized to take dynamic connections into account.
In the RTDNN framework,  (2),  (5) and (6) are generalized to

• Let all units of the new, equivalent network have a new property called delay and initialize
it to zero for all units.

Let the delay of unit i be d’ i.

Let count = 0
do {

for each unit i {
for each connection wji ,d in the original network flowing to unit i from unit j with

delay d {
if d’ j - d > d’ i  then let d’i = d’ j + d

}
}
Let count = count +1

}
until no delay changes during a whole iteration or count is greater than the total number of
units

• If the loop was terminated because count grew larger than the number units, the network
cannot be a feed-forward network and thus the design is in error. This check should be
made each time new connections are added to a network.

• Sort the units in order of increasing delay. This is the order in which the units are
computed in the simulations.

• Modify the delays of the equivalent network so that for each connection wji ,d in the original
network, the corresponding connection is w’ ji ,d’, where d’ = d’ i - d’ j + d, i.e., the difference
in the two unit’s delays is taken into account. It is easy to see from the construction of the
unit delays that no connections in the equivalent network can have negative delay (look-
ahead).

• Target values for output units are delayed by the respective unit’s delays.

Table 1 Algorithm for converting a feed-forward network with look-ahead connections to one
with delayed targets. A check is also made that the network is indeed a feed-forward one; if
the variable ‘count’ grows larger than the number of units in the network, there must be some
loop in the network that allows a units’ activity to depend on its own value, and the network is
therefore not a feed-forward network.
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where wjid is the connection weight for the connection from unit j to unit i with delay d
(possibly negative for look-ahead) and ai,t is the activity of unit i at time t.

2.3 Back-propagation through time

In the previous section the forward equations were extended to allow for time-delayed
connections in a rather straight-forward fashion. In this section we focus on the backward
equations, i.e., the computation of the derivatives of the objective function, E, with respect to
the connection weights. Following the formalism of the previous section,  (9),  (10) and  (11)
can be generalized as follows:
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where the two sums together have one term for each connection flowing out from unit i.
Further, the derivatives with respect to the connection weights are generalized to:
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where t is the time index of activities and t0 and t1 are the boundaries of the sequence. Recall
that in the network used in the computer simulations, all delays d are non-negative. This has
the consequence that  (15) describes a recursive set of equations where the δ’s are computed
in reverse order of time, t, hence the name back-propagation through time, (Rumelhart, Hinton
and Williams, 1986; Pearlmutter, 1990).

A way to visualize back-propagation through time is to draw the spatial dimension of the
network in one dimension, e.g., line up all units in one column. Then unfold the network in
the time dimension, i.e., draw one column of units for each time point. Figure 2 shows a very
simple example of such an unfolded network. The unfolded version of the network is
structurally similar to a network with no delays but as many layers as there are time points.
The important difference is that the connection weights are shared by all connections that
correspond to the same connection in the original network. Back-propagation through time is
equivalent to normal back-propagation with this additional constraint on the weights.

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

z-1z-2

z-1

a

b c

d

z-1

time

Figure 2. A simple dynamic network (left) and the same network unfolded in time (right)
where the nodes a-d are duplicated for each time point. Arcs labeled z-x indicates that the
connection is delayed x time points. It is easy to see in the right figure that the network is
feed-forward because all arcs flow from bottom left to upper right.

2.4 Weight updating scheme

Training an ANN using the back-propagation paradigm is an optimization problem, i.e.,
finding the set of connection weights that minimizes the objective function E. The backward
equations  (15) -(17), provide us with the derivatives of the objective function with respect to
the connection weights which makes gradient descent methods feasible. However, gradient
descent optimization is a very broad class of methods and it is the particular weight updating
scheme (based on the gradient) that determines the success or failure of an implementation of
the algorithm. In our experience, the classic stochastic weight updating scheme by Rumelhart,
Hinton and Willi ams (1986), with some modifications, continues to be a good choice for
problems with a large amount of training data. It can be written
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where superscript (n) indicates a parameter after iteration number n and γ and η are the gain
and momentum parameters respectively.

There are many well -known methods that utili ze curvature information for the
optimization. General optimization methods, e.g., Newton’s method or conjugate gradient
methods (see for example Luenberger, 1984) can be applied, as well as more or less
specialized methods for ANN-training like QuickProp (Fahlman 1988), and application of
Levenberg/Marquardt’s method, Levenberg (1944), Marquardt (1963). However, it is non-
trivial combine these methods with stochastic approximation algorithms, where weights are
updated before the whole training data is processed (an epoch). In the simple updating scheme
of (18), networks without delayed connections can be updated after every input/output pattern
– so called pattern updating. Although the updating is based on an approximation of the
gradient computed from only one pattern, the algorithm will still converge if the gain is small
enough (and in many cases much faster than with epoch updating).

The picture becomes more complicated in the case of back-propagation through time
because the derivatives depend not only on the current pattern, but on the whole sequence of
patterns. We have adopted the approximate scheme to update the weights every N frames, i.e.,
approximate the derivative based on sub-sequences of the training data. This method has also
been used by Robinson (1994) and is described in more detail i n Table 2. The gradient
computed in this manner is not only an approximation because it is based on a small number
of time-points – it is also approximate because the δ ’s of  (15) actually depend on the unit
activities at all following points (not just the ones computed so far). The approximation is
clearly worse if the weights are updated more frequently, but on the other hand it is desirable
to update the weights as often as possible to speed up the process. In the simulations of this
study, weights are updated every 20-30 time points. This choice was made after some
preliminary experiments and is intuitively reasonable as it corresponds roughly to the length
of a syllable. It is also a number similar to that used by Robinson (1994). The exact number of
frames between each update is chosen randomly from a square distribution between 20 and
30, this has the effect that the points of update are different from epoch to epoch.

We have still not discussed the choice of the parameters γ and η. An oversight in the
famous work by Rumelhart, Hinton and Willi ams (1986) is that they let γ and η be constants.
It is well -known from statistics theory that back-propagation training with stochastic updating,

1) Let t0 = 1
2) Let step be an integer randomly chosen from the square distribution [20, 30].
3) Let t1 = t0 + step
4) Compute unit activities using (12) and  (13) with the given t0 and t1

5) Compute derivatives backwards from t1 to t0 using  (15) - (17).
6) Update connection weights according to  (18).
7) Let t0 = t1 +1
8) Go to step 2

Table 2. Weight updating scheme for back-propagation through time. The random step-
length in step 2 makes the update points differ from epoch to epoch.
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converges to a local minimum of E, only if a few constraints on the decay of the gain
parameter are fulfill ed. An survey of results in the statistical analysis of ANN learning
schemes is given by White (1989). In section 4.2 of his survey, the statistical properties of
stochastic updating is discussed and necessary conditions for convergence is given. In another
study, Juang and Katagiri (1992) give the following conditions for convergence:
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where superscript (n) again indicates the parameter after iteration number n (e.g
Also in practice is it fruitful to let the gain parameter decrease during the optimization. We

have combined this feature with cross-validation in a manner similar to Bourlard and Morgan
(1993). The idea is to decrease the gain parameter every time the objective function fails to
decrease on the validation set. To be more specific, the training data is partitioned into a
training set and a smaller validation set. The training set is used for back-propagation training
with weight updating according to (18), but after each epoch, the objective function is
computed for the validation set too. This is done using only the forward equations, i.e.,
without updating the weights. The objective function for the validation set is recorded for each
epoch and whenever it fails to decrease, the gain parameter γ is multiplied by a constant factor
α < 1. In this study α is always 0.5.

We appreciate that the decay of the gain parameter and the cross validation procedure are
two separate concepts and that it would therefore be more elegant to control them
independently. However, in practice the two are closely related, and the described strategy
have resulted in fast accurate optimization for the phoneme probability estimation task.

The momentum parameter, η ∈ [0, 1], controls the smoothing of the gradient estimates,
and can have a considerable effect on the convergence rate. In the simulations presented
below, η is always 0.7.

2.5 Weight initialization

It is clear that the initial values of the connection weights are important for the performance of
the back-propagation training. The algorithm finds one particular local minimum of the
objective function, and the particular minimum found depends heavily on the starting point in
the search space, i.e., the initial connection weights. It is common practice to initialize the
weights to small random numbers (e.g., Fahlman, 1988). This implies that sigmoid and tanhyp
units operate in the linear region of the non-linearity. In our experiments, the weights are
initialized to square distributed random numbers [-0.1; 0.1] (but see also section 3.2).

2.6 Interpretation of the output activation values

It seems intuitively clear that reducing the error function E improves the classification
performance of the ANN. However, it is essential for the understanding of the ANN classifier
to formalize this notion. For our needs, it seems sound to define the best possible classifier to
be the Bayesian discriminant function. Any function that implements the classification
procedure: “associate the input observation with the class that has the highest a posteriori
probabilit y” , constitutes the Bayesian discriminant function. One obvious implementation is to
accurately estimate the a posteriori probabiliti es for each class and then select the most
probable class. In this case, the degree to which a classifier succeeds in its task depends on the
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accuracy in the estimation of the a posterioris. Justifying interpreting the output activities as a
posteriori probabiliti es is fundamental for the theoretical foundation of the hybrid
ANN/HMM speech recognition paradigm discussed in section 3.5.

It was proved early on that training networks with the mean square error (MSE) objective
function is equivalent to minimizing the MSE of the a posterioris. Duda and Hart (1973)
formulated the proof for the simple perceptron and it was later extended to multi -layer
perceptrons by a number of authors: Baum and Wilczek (1988),  Bourlard and Wellekens
(1988), Richard and Lippman (1991), and Gish (1990). The proofs are valid under the
condition that the functional capacity of the network exceeds the functional complexity of the
a posterioris.

In our simulations, the cross-entropy error function is used. An analogous relationship
between the a posteriori probabiliti es and the output activities of networks trained with the
cross-entropy objective function was given by Hampshire and Pearlmutter (1990). They show
that the MSE objective function is just a special case of a class of “ reasonable” error measures
that yield networks with output units that converge to the a posteriori probabiliti es P(ci | o).
Here we outline a simpli fied version of their proof, showing only that the cross entropy
objective function is a member of the class of “reasonable” error measures.

An important concept of the proof is prototypes. The input vector space is partitioned into
regions op, where P(ci | o ∈ op) is “essentially” constant. The regions are called prototypes.
This modeling of the probabilit y distributions is consistent with the limited resolution in the
modeling of probabilit y density functions due to finite amount of training data. To make the
idea of prototypes more concrete, we note that the prototype concept is similar to that of
vector quantization, often used in speech technology applications. In this analogy, prototypes
correspond to entries in a quantization code-book.

If we consider one particular class ci and let N be the total number of samples in the
training data, we can write the contribution of the error from output unit i as:

E
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=
=
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,

(20)

where ei,t is the contribution from unit i and sample t. Now, let us sum over prototypes instead
of samples; let P be the number of prototypes, Np the number of samples from prototype
number p, and np the number of samples from prototype number p. belonging to class i. Recall
that the target τi,RWH is 1 for the np samples belonging to class i, and 0 for the remaining Np - np

samples. Inserting into (7), we get the following expression for the contribution of the class’s
unit to the error:
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where ap = a(op) is the output activity of the class’s unit in the RHW domain of prototype p.
The asymptotic behavior as N → ∞ is
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 (22)

where we have replaced the expressions for relative frequency in (21) with probabiliti es (law
of large numbers). A necessary and suff icient condition for local optimization is that the
gradient of E with respect to ap is zero for all prototypes. For class i we get:
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Thus, the output activities of the network asymptotically approximates the a posteriori
probabilities.

The networks of our simulations are typically large with high functional capacity and the
training database is fairly large, so properly trained networks should be able to estimate
p(ci | o) with good accuracy. However, given the complexity of the training algorithm with
several different approximations and ad hoc parameters, an empirical study is called for. In
section 5 such an experiment is presented and it is shown that the output activities do indeed
approximate p(ci | o) closely.

2.7 The “softmax” output activation function

The interpretation of the output activities as the a posteriori phoneme observation
probabiliti es established in the previous section, leads to some concern about the
appropriateness of  the simple activation function of the output units. If the output units are
the class probabiliti es and the classes cover the entire observation space, then their sum must
clearly be exactly one. However, the simple local activation function used does not enforce
this constraint, indicating that there is some redundancy in the model. This constraint can be
enforced by normalizing the activities, yielding a more complex non-local activation function
for the output values. A theoretically appealing normalization is the so called “softmax”
activation function (Bridle 1989; Robinson, 1994; Bourlard and Morgan, 1993),
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where index j runs over the output units of all classes. Clearly the softmax function ensures
that the output activities sum to one, but this is accomplished at the cost of some increase in
complexity. In our framework, the softmax activation function is implemented using
exponential units, multiplication units and an inverter unit as ill ustrated in Figure 3. The
redundancy in the model can now be eliminated by removing all connections to one of the
output units. It is easy to show that this yields an equivalent activation function to (24), by
showing that adding a constant bias to all neti has no effect:
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Because of its theoretical appeal, the softmax function is used in the simulations, but it
should be noted that the performance increases only marginally. Networks trained with
softmax tend to converge to globally more optimal local minima (lower E), probably because
low probabiliti es are modeled better, but we have seen no improvement in phoneme
recognition experiments and only a small decrease in word error-rate.
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Figure 3. Sub-network implementing the softmax activation function. The units in the top
layer computes the activities of (24). This sub-network is regarded as one single layer to other
layers of the ANN. Connections from hidden units to this output layer are connected to the
lower layer only. The internal weights of the sub-network have the constant weight 1.0 and
are not changed during training.

3 Phoneme probability estimation
In this section we show how the theory and algorithms of section 2 are applied to the
particular task of estimating the phoneme probabilities given acoustic input.

3.1 Input feature representation

The raw speech waveform is not well suited for input to an ANN classifier. Therefore, it is
common practice to transform the input speech signal to the short-time frequency domain
before feeding it to the phonetic classifier. The transform used in our experiments computes a
standard variation of the Mel cepstrum coeff icients. Readers familiar with the HTK toolkit
(Young et al., 1995) will notice that the features used here are almost identical to those of its
feature extraction tool. The procedure is discussed more elaborately in (Ström, 1996). Here we
give only an outline of the procedure.

The speech signal is divided into short overlapping frames as shown in Figure 4. The
frame-rate is 100 frames per second. The DC offset in each frame is removed and pre-
emphasis is applied to the signal. The signal of each frame is then Hamming windowed and
padded with zero-valued samples to the nearest power of two samples, and the FFT transform
is applied to get the magnitude spectrum. In Figure 4, the different windows are shown
together with an example of a speech signal.

The magnitude spectrum of the FFT is a frequency-domain representation of the speech in
the frame as desired, but it is still not well suited as input to the ANN. The high frequency
resolution of the spectrum gives input vectors of high dimension, which requires unnecessarily
many weights to estimate in the ANN. This in turn leads to weak estimates and poor
performance. For this reason, the spectrum of each frame is mapped to a more compact
representation by a compressing transform. This is done in two steps: first a filter-bank is
applied to the FFT spectrum and then the cosine transform is applied to the vector of f ilter-
bank outputs. The filter-bank consists of a number of overlapping triangular, equidistantly
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spaced filters (see Figure 4) on the perceptually motivated Mel frequency scale (Schroeder,
Atal and Hall , 1979). We use 24 Mel spaced filters covering the frequency range 0-8000 Hz.
The cosine transform is applied to the filter-bank vector, yielding the cepstrum coeff icients.
The first twelve cepstrum coeff icients are used, and together with the logarithm of the energy
of the frame they constitute the feature representation that is fed to the ANN classifier as the
input observation.
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Figure 4. Left: Signal processing time constants and a sample speech signal. The three
different time axes are 1) sample points, the sample frequency is 16k Hz, 2) ms and 3) frames.
The features of a frame is computed from the signal convoluted with a Hamming window of
25 ms giving an effective window of about 10 ms.

Top right: Mel scaled filter-bank with triangular filters.

Bottom right: I llustration of the resulting time and frequency resolution in a spectrogram-like
plot. The uttered (Swedish) word is “Waxholm” (YDNVK2OP).

3.2 Delta coefficients

It is common practice to include the first and second time-derivatives (delta coeff icients) of
the cepstrum coeff icients in the input vector. In the case of the standard HMM-model, this
mainly serves the purpose of introducing some dynamic information to the classifier. For
dynamic ANNs, the reason for including delta coeff icients is less clear. In fact, a TDNN with
a time-delay window of f ive frames can “ learn” to extract delta coeff icients from the input
vector during training as they are simply linear combinations of the input. One could therefore
argue that, if delta coeff icients are productive for the classification performance, they will
evolve in the network during training, and there is therefore no need for explicitl y supplying
them. However, this is true only in the ideal situation that there is an unlimited amount of
training data and that the optimization algorithm is perfect, i.e., finds the global optimum
regardless of the initial values of the parameters.

If we assume that the delta parameters are good features for representing dynamic
information, they have two advantages over the brute-force method of widening the time-
delay window to take dynamic features into account. First, the derivatives are a more compact
representation of the dynamics than a window of input frames, leading to fewer parameters to
estimate and therefore more robust estimates. Second, the delta coeff icients can be seen as a
particularly good initialization of connection weights, leading to a more well behaved
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optimization. The interpretation of delta coeff icients as a choice of initial weights becomes
more clear when we describe how delta and delta-delta coeff icients are implemented in the
networks. Because the delta coeff icients are linear combinations of the existing input
activities, they can be modeled by linear units in the network. Thus, the delta coeff icients are
linear units with four in-flowing connections with weights clamped to the values in the
following formula

( )d c c c ct t t t t= + − −+ + − −
1

10
2 22 1 1 2

(26)

where dt is the activity of the delta coeff icient unit and ct-x are the activities of the original
input unit delayed x frames. Equation (26) can be derived from linear regression and is
equivalent to the default delta coeff icients of the HTK toolkit (Young et al., 1995). Second
order time derivatives, so called delta-delta parameters, are computed in the same manner by
applying (26) again to the delta coeff icients. Figure 5 ill ustrates the network implementation
of the delta and delta-delta units.

dd dd dd dd dd

d d d d d

time

c c cc c
c

d
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-2z-2

-2z-2

2z+2

2z+2z+1

z+1-z-1
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Figure 5. Implementation of delta and delta-delta coefficients in a network. The unit marked c
is a cepstrum coefficient input unit. The units marked d and dd are the corresponding delta
and delta-delta units. The weights of the linear units implementing d and dd are clamped
according to (26).

3.3 Input normalization

In section 2.5 we saw that a well -chosen weight initialization scheme is helpful for finding
good local minima. For the same reason it is also desirable that the activities of the input units
are of similar magnitude as the other units of the network. This is achieved by applying a
linear normalization to the input values. The coeff icients of the linear transform can be
determined in different ways, but we have chosen to base the normalization on the mean and
standard deviation of the input values in the training database. After collecting second order
statistics, it is easy to linearly transform each input to a variable with zero mean and a
controlled variance. In the simulations, we enforced a standard deviation of 1.0 for all i nput
units.

The normalization was applied to the input units using a special normalization step that is
performed only for input/output units. The delta and delta-delta units that are not input units to
the network (but play a similar role) are also normalized by adding a connection from the bias-
unit for the constant offset, and scaling the other connections appropriately. The connection
weights of connections flowing into the normalized delta and delta-delta units are then
clamped and are not altered in the back-propagation training. After this normalization, the
activities of the input units and the delta and delta-delta units all have mean zero and standard
deviation one.
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3.4 Network topology

The topology of the network, i.e., the number of hidden units and the manner in which they
are connected, determines the functional capacity of the classifier. It has been proved (e.g.,
Hornik, Stinchcombe and White, 1989) that ANNs with one layer of hidden units can
approximate with arbitrary precision any smooth function on a compact domain. However,
this is a theoretical result that requires that the function is completely known and that the
number of hidden units is unbounded. Neither of these conditions can be fully satisfied in our
problem of phoneme probabilit y estimation, but it still gives some guidance. Although it is
possible that a network topology with more than one hidden layer could utili ze the connection
parameters in a more eff icient manner to estimate the probabilit y functions, we have limited
the experiments to networks with one hidden layer and varied only the number of hidden
units. The main motivation for this decision was to reduce the number of configurations to
evaluate in the computationally rather costly computer simulations.

The input units, the delta and the delta-delta units are connected to the hidden units with a
skewed time-delay window with dynamic connections ranging from five frames look-ahead to
one frame delay. The motivation for the skewed window is that the hidden units additionally
have recurrent connections between each other, with time-delay ranging from one to three
frames. The recurrent connections provide the hidden units with additional information about
the state of the network at past frames, and therefore the delayed side of the time-delay
window can be smaller than the look-ahead side. Finally, the output units are connected to the
hidden units with a symmetric time-delay window from plus one to minus one frame. The
network topology is illustrated in Figure 6.

The total number of connections in the network, determining the computational effort
needed for computer simulations, can now be computed. The number of connections
implementing the delta and delta-delta parameters is small (104) compared to the connections
to and from the hidden layer. There are 13 input units and therefore 3×13=39 units in the
lowest layer (see Figure 6). Further, let there be N units in the hidden layer and 61 units in the
output layer (the number of phonemes in the TIMIT database). This yields

104 + 39×N×7 + N×N×3 + N×61×3 = 3N2 + 456N + 104  (27)

connections in total. As an example, the moderate number of 300 hidden units gives 406,904
connections – a respectable number that implies a substantial computational effort for
computer simulations. This problem is addressed in section 4 where we show how it is
possible to reduce the number of connections without decreasing the number of hidden units.
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connections implementing 
the delta operation
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cepstrum input units
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delta-delta units
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delta and delta-delta units, 
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Figure 6. The network topology of the ANNs. The parallelograms indicate layers, and arrows
between layers represent sets of connections from the units in one layer to units in another.
Because of the dynamic nature of the networks, there are typically several connections with
different time-delay or look-ahead between two connected units. The layer of output units is
sometimes replaced by a group implementing the softmax activation function (see section 2.7).

3.5 Dynamic decoding

The ANNs described so far classify 10 ms frames of audio-input into one of the phoneme
classes. In the dynamic decoding step of the ASR, this frame-based output from the network is
used to find the (in some sense) optimal sequence of phonemes or words. The dynamic
decoding of the system used in this study is described in more detail i n (Ström, 1996). To
summarize this study, the well -known hybrid HMM/ANN paradigm (Bourlard and Wellekens,
1990) is adopted, where the output activities are interpreted as the a posteriori phoneme
probabiliti es, p(ci | o) (see section 2.6). The observation probabiliti es, p(o | ci), are derived
from the a posteriori phoneme probabiliti es using Bayes’s rule. In the case of tanhyp output
units, it is necessary to normalize to the RHW range (see section 2.1, Equation  (3). Thus, the
observation probabilities can be written:
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where p(ci) are the a priori class frequencies that are estimated off- line from the training data
and aci

 is the activation of the output unit for phoneme i (with range [-1, 1]). The
unconditioned observation probabilit y, p(o), is constant for all classes and is therefore dropped
in the computations.

The Markov model for a phoneme is shown in Figure 7. The observation probabilit y is
constant for all transitions of the phoneme model, and the transition probabiliti es are
maximum likelihood (ML) estimates from the durations of the training database. In addition to
the coarse duration model imposed by the transition probabiliti es, a phoneme-dependent
minimum duration constraint is used. It is implemented by adding extra nodes to the HMM
and putting a self-loop on the last node only, as shown in Figure 9. The minimum duration, m
frames, for each phoneme is selected such that about 5% of the phones in the training data are
shorter than m frames. The fraction 5% was chosen, after some experimenting, to optimize the
recognition performance. However, the improvement is very small for phoneme recognition.

A probabili stic word-class bi-gram grammar is used in the word-level evaluation and a
phoneme bi-gram grammar is used in the phoneme recognition evaluations.
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Figure 7. Phoneme HMM. Left: One-state HMM with transition probabilities expressed in
mean duration. It is easy to show that the indicated probabilities are the ML estimates of the
model parameters. The mean duration is computed from the phones of the training data.
Right: Phoneme HMM with minimum duration constraint. See the main text for details.

4 Pruning and sparse connection
The number of hidden units determines to a large extent a network’s abilit y to estimate the a
posteriori probabiliti es accurately. It is therefore desirable to experiment with networks with a
large hidden layer. Unfortunately, as was ill ustrated by  (27), the number of connections grows
rapidly with the number of hidden units, and that number is practically bounded by the
available computational resources. One could argue that it is the number of free trainable
parameters in the network that is the important factor. In this view, it is not the number of
units, but the number of connections that is important. However, from experience we know
that not only the number of parameters is important, but also how they are put to use.
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In an attempt to evaluate the eff iciency of the fully connected structure that leads to  (27),
we studied the statistical properties of the magnitudes of the connection weights. The idea is
that the weight is an indication of the salience of an individual connection in a trained network
(this is elaborated in section 4.1). Figure 8 is a histogram of the connection weights in a
typical ANN after back-propagation training. The notable concentration of weights close to
zero inspired us to experiment with sparsely connected networks and connection pruning
schemes for trained networks.
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Figure 8. Left: histogram of the connection weights in a typical network with about 123,000
connections. The x-axis shows the connection weight and the y-axis is the number of
connections in each bin. Right: the histogram converted to a probability distribution plot. The
thin line is a Normal distribution with mean zero and standard deviation 0.052. The close
agreement clearly indicates that the weight distribution is approximately normal for small
weights

4.1 Connection Pruning

If the assumption that weights of small amplitude are suspendable is correct, it can be seen in
Figure 8 that many connections can potentially be removed. This would greatly reduce the
computational effort for running trained networks. Since pruning reduces the number of free
parameters, it can also improve the network’s generalization abilit y (e.g. Le Cun, Denker, and
Solla, 1990a; Sietsma and Dow, 1991), but because we use a truncated training scheme with a
validation set (recall section 2.4), this potential benefit is less important in this study. Several
different criteria for selecting connections for deletion have been suggested in the literature.
An overview of the methods can be found in (Thimm and Fiesler, 1995). The most well
known are smallest variance (Sietsma and Dow, 1991) and optimal brain damage (OBD) (Le
Cun, Denker, and Solla, 1990a). The OBD method is based on a local approximation of the
contribution of individual weights to the objective function. If the Hessian is assumed to be
diagonal, i.e., the mixed derivatives between weights are neglected, the Mc Laurin series of E
with respect to a weight w can be written
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where E0 is a constant independent of w. Close to minima, the gradient is small so the second
term of  (29) is approximately zero. Thus, if |w|<<1, the contribution of w to E is dominated
by the third term. Le Cun, Denker and Solla show how the diagonal Hessian can be computed
with the same algorithmic complexity as computing the gradient in a recursive procedure
similar to the back-propagation algorithm. The connection pruning is then governed by the
“salience”, 0.5 × ∂2E/∂w2 × w2, of each weight. An overview of methods for computing
second derivatives in feed-forward ANNs can be found in (Bundine and Wiegend, 1994).

There are three approximations active in the OBD method: the off-diagonal terms of the
Hessian, the higher-than-quadratic terms and the gradient’s deviation from zero. The influence
of the gradient is easily handled because the gradient is known from the back-propagation, and
consequently the second term of (29) does not need to be approximated. The other two
approximations however, restricts the algorithm to operating on small weights.

In the simulations of this study, we base the pruning on a more simplistic salience-measure
using only the information gathered in the back-propagation computations, i.e., the weights
and the gradient. The pruning implemented in the toolkit of the Appendix, is controlled by the
two parameters α and β in the following rule
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α α
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where sensible values for α are lower than 0.10, and β is dependent on the network and the
training data, but can be tuned to get the desired pruning aggressiveness. However,
experiments have indicated that the second constraint is much weaker than the first. The same
amount of pruning and almost identical network performance is achieved by just considering
the absolute value of the weight. Therefore, we use only the first criterion in the evaluations of
section 5 (or equivalently, we set β = ∞). Thus, weights are simply removed if |w| < α. In this
case, it is α that is tuned to get the preferred amount of pruning.

The probabili stic descent method used for weight updating produces weights that are the
sum of many small updating steps. Let us consider the possibilit y that small weights are
merely the result of the weight updating procedure. If we assume that for small weights,
individual updating steps are independent random variables with identical distribution, the
resulting weights are Normal distributed (Central Limit theorem). Studying the weight
distribution of Figure 8, it is seen that close to zero, the empirically found distribution can
indeed be well approximated by a Normal distribution, but for weights with a magnitude
greater than about 0.075, this is no longer true. We conclude that at least not all weights
greater than 0.075 are mere artifacts of the training procedure – a useful observation for
selection of the parameter α.

After pruning, the network is retrained to find the optimal weights of the new, more
constrained network. The retraining converges much faster than the original training – the
network is smaller, and typically a few epochs is enough. Although the main effect of the
retraining is to correct for the disturbance from the deleted connections, a possible side-effect
is that the ANN escapes a local minimum of the error function.



Nikko Ström, Phoneme Probability Estimation with Dynamic Sparsely Connected Artificial Neural Networks

24

A weakness in the case made for OBD by Le Cun, Denker, and Solla is that the OBD
approach is compared to, and found superior to, the simple magnitude-based method before
retraining, but no comparison is reported after retraining. This is unsatisfactory since the effect
of retraining is far larger than the reported difference between the two methods. The
simulations in section 5 of this study show that, although the simple pruning criterion is used,
the network performance after retraining can be equal to or even better than that of the original
network.

4.2 Sparse connection

Pruning the connections of an already trained network has no impact on the computational
effort for training. To be able to apply the pruning criterion to the connections, the weights of
the fully connected network must first be trained. Therefore, a natural next step in our efforts
to reduce the computational cost is to start the training with already sparsely connected
networks. However, before training, there is no available information about which
connections are salient, so a random set of connections must be selected. Of course, this is in
general not the optimal set, but as will be ill ustrated in section 5, the resulting classifier may
still be competitive.

A straight-forward random connection scheme is to consider all connections in a
hypothetical, fully connected network and let each be a connection in the actual sparse
network with probabilit y φ (connectivity). The expected number of connections in the sparse
network is then φN, where N is the number of connections in the fully connected network. A
useful extension is to allow φ to be different for different sets of connections, e.g., the
connections from the input units can be treated differently than the recurrent connections and
the connections to the output units etc. Ghosh and Tumer (1994) point out that the sparse
connectivity has the effect of decoupling the output units, i.e., all output units are not
connected to the same hidden units. They report results from several comparative studies
where sparsely connected networks perform as well as, and in some cases better than both
OBD and fully connected networks. Because the decoupling effect is larger if connections in
higher layers are more sparsely connected than lower layers, it is suggested that this is an
advantageous scheme.

Our motivation for sparse connection is different from that of Ghosh and Tumer in that we
focus on the reduced computational demands instead of the potential improved generalization
abilit y. Because the number of connections is much larger than the number of units, the
computational cost for both training and running the ANNs is proportional to the number of
connections. From  (27) we see that the number of connections between a fixed-size layer and
the hidden layer, is proportional to the connectivity and the number of hidden units. Thus, it is
possible to vary the size of the hidden layer, while keeping the number of connections fixed
by imposing φH = constant, where H is the number of hidden units. The recurrent units are
more problematic. By inspecting  (27) again, it is seen that the number of recurrent
connections is proportional to the square of the size of the hidden layer. Therefore, for large
networks, the recurrent connections dominate the total number heavily. Imposing
φH2 = constant would yield ANNs with varying hidden layer size and equal number of
connections, but for large H, the connectivity would drop too fast. Initial experiments showed
that, in this case the reduction of the network’s functional capacity due to the very sparsely
connected recurrent connections can not be compensated for by the increased number of
hidden units.

To overcome the quadratic relationship between the layer size and the number of hidden
units, localized connectivity is introduced. Recurrent connections are added with probabilit y
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µ exp(-d[u1,u2] / σ), where d[u1,u2] is the distance between unit u1 and unit u2, µ is the overall
connectivity constant, and σ is a constant of “spread” . Distance is simply defined as the
difference in ordering number within the layer, e.g., the distance between the 5th and the 17th

unit is 12. Thus, the self-loop connectivity is µ, and σ controls how fast the connectivity
decays as a function of distance. In the simulations, we use µ = 1.0 and σ is varied to control
the number of connections. Figure 9 illustrates the connectivity for the case σ = 20.

Local connectivity has previously been used primarily for sets of units with an intuitively
clear metric, e.g., in character recognition (e.g., Le Cun et al., 1990b) where the units
correspond to positions on a two-dimensional surface, and other tasks related to vision. In
these tasks the local connectivity is often combined with weight-sharing to impose plausible
task-dependent symmetry conditions (Le Cun et al., 1990b). In the speech field, a metric can
be defined by some scale on the frequency dimension in filter-bank representations of the
input features. An experiment with local connectivity based on this metric is reported by Basu
and Svendsen (1993), but the recognition accuracy is too low both for the baseline and the
locally connected network for any definite conclusions. In contrast to the mentioned
experiments, the hidden layer of our networks has no metric that reflects some structure of the
problem. The intuition behind the local connectivity scheme in this case, is that sub-groups of
units with many connections connecting the group, may promote the development of unit
clusters that solves sub-tasks eff iciently. The underlying assumption is that breaking up the
classification problem into sub-tasks leads to better local minima. The assumption is not self-
evident but, empirically we have found that the local connection scheme outperforms simple
sparse connection when the total connectivity is low (see section 5).
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distance05 20

connectivity

Figure 9. Connectivity in the hidden layer with localized connection rule. Connections are
added with probability µ exp(-d[u1,u2] / σ). Top: the connection probability with µ = 1.0 and
σ = 20. Bottom: sample layer with recurrent connections from one unit indicated.
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5 Recognition results
The phoneme probabilit y ANNs have been evaluated in two different experimental
environments. The system used in the evaluations was developed for speech recognition in the
WAXHOLM human/machine dialog system (Blomberg et al., 1993). The Swedish database
collected in the development of that system (Bertenstam et al., 1995a,b) is used for evaluation
on the word level. Many aspects of the word recognition used in the WAXHOLM system are
not covered in this paper, but the recognition module of the system is accounted for in depth
by Ström (1996). In addition to the word-level evaluation, phoneme recognition on the well -
known American English TIMIT database (Zue, Seneff and Glass, 1991) has been performed
to be able to calibrate the performance against other systems. The decoder from the word
recognizer of the WAXHOLM system was used also for the phoneme recognition experiments
by simply assigning a word to each phoneme.

Word/phone error-rate is computed in the standard dynamic time warping (DTW)
alignment fashion, i.e., the recognized string of symbols is optimally aligned with the correct
string by minimizing an objective function that penalizes substitutions with the value 10 and
deletions and insertions with 7. The error-rate is defined as the total number of substitutions
(S), deletions (D) and insertions (I) divided by the number of symbols (N) in the correct string,
i.e., (S + D + I) / N.

5.1 Phoneme recognition results on the TIMIT database

No other databases have been so thoroughly ill uminated by different research sites using a
multitude of methods for phoneme recognition, as the TIMIT database. Table 3 shows a few
of the numerous reported recognition results for different methods.

The training and test partition of the database as well as the smaller core test-set is defined
in the documentation distributed with the database. All training utterances except the so called
“sa-sentences” were used for training. For evaluation, we chose to focus on the core test-set
because it is better dialect and gender balanced than the full set.

The phoneme set to use for evaluation is not equally standardized. The 61 symbols of the
database are sometimes considered a too narrow transcription for practical use, and are
therefore collapsed into a smaller number of classes. In this study we perform evaluations
using the 39 phoneme set defined in (Lee and Hon, 1989) that have evolved into an unoff icial
standard for phoneme recognition experiments. However, in conformity with the study of
Robinson (1994), the full 61 symbol set is represented in the output layer of the ANN as well
as in the phoneme bigram grammar of the dynamic decoding. After recognition, the
recognized symbol string is mapped to the 39 phoneme set for evaluation.

The back-propagation training, described in detail i n section 2, was terminated after 30
epochs for all networks. In all cases, the learning curve had leveled out after this amount of
training (see Figure 13).
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5.1.1 Experiments with varying connectivity
An ensemble of networks with the topology described in section 3.4, and varying connectivity
and hidden layer size have been trained and evaluated. The connections were divided into
three sets: A) the connections from the cepstrum feature units to the hidden units, B) the
recurrent connections of the hidden layer and C) the connections from the hidden layer to the
phoneme output units. Sets A and C were sparsely connected by randomly selecting a portion
of the connections of a fully connected network (controlled by the φ parameter), and set B was
connected using the localized connection scheme defined in section 4.2 (controlled by the σ
parameter). Motivated by preliminary experiments, a hidden layer of 300 units was selected
for a study of the effect of varying the connectivity. More hidden units give higher recognition
results, but the price is longer training times, and it was assumed that 300 units is enough for
making experiments that yield insights that scale up to larger networks. In Figure 10 the
phoneme recognition results with 300 hidden units are shown.

A fully connected network with 100 hidden units is included in the figures for comparison,
but it is clearly outperformed by the sparsely connected ANNs. Compare for example, the
underlined error-rates in Figure 10, for two networks with the same number of connections.

The first two sweeps in Figure 10 show how the classification performance is affected by
increasing the connectivity in the recurrent connections. It can be seen that the sweep with
10% connectivity (φ = 0.10) for the non-recurrent connections gives a better trade-off between
performance and number of connections, indicating that the number of recurrent connections
should optimally be relatively large compared to the other types of connections.

Author(s) Method Full test set Core set

Lee and Hon, 1989 Continuous density HMM 33.9 %

Digalakis, Ostendorf and
Rohlicek, 1992

Stochastic segment model 36.0 %

Lamel and Gauvain, 1993 Continuous density HMM 30.9 %

Goldenthal, 1994 Trajectory model 30.5 %

Robinson, 1994 Recurrent ANN 25.0 % 26.1 %

Mari, Fohr, and Junqua,
1996

2nd order HMM 31.2 %

Glass, Chang, and
McCandless, 1996

Feature based recognition 30.5 %

Ström, 1997 (this paper) Sparse, Recurrent, Time-delay
ANN

27.0 % 27.8 %

Table 3. A few reported phoneme recognition results for the TIMIT database. Phone error-
rates are given for the full test set and the core test separately. The core test set is slightly
harder to recognize because of its more balanced dialect and gender distribution. The error-
rate of the best network of this paper is lower than all other reported results except the
recurrent network of Robinson (1994).
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5.1.2 Decoupling the output units
The four rightmost columns of Figure 10 was designed to test the hypothesis of Ghosh and
Tumer (1994), that the connections to the output (phoneme) layer should be more sparse than
the lower layer, to decouple the output units. As can be seen, this is supported by our results –
a fact that will be utili zed in future experiments to design more eff icient networks. In
summary, the experiments with 300 units and varying connectivity indicates that high
connectivity should be assigned to the connections from the input to the hidden units, low
connectivity should be assigned to connections to the output units, but the number of recurrent
connections should be relatively large.
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Figure 10. Phone error-rate for an ensemble of networks with 300 hidden units and different
connectivity. Error-rate is defined as the total number of insertions, deletions and
substitutions per phone. A fully connected ANN with 100 hidden units is also included for
comparison. By comparing the underlined results, it is clearly seen that the fully connected
network is outperformed by its sparsely connected counterparts with an equal number of
connections.

5.1.3 Varying the hidden layer size
To also probe into the hidden layer size dimension, a series of networks with identical
connectivity, but varying number of hidden units, was trained and evaluated. The results of
this sweep of simulations are shown in Figure 11. It is seen that the error-rate is steadily
decreasing with increasing number of hidden units. This figure ill ustrates the most important
advantage of sparsely connected ANNs – sparse connection schemes allow us to work with
larger hidden layers, with accompanying reduction in error-rate, than otherwise possible. For
comparison, a fully connected network with 600 units would have 1,353,704 connections
(Equation  (27)).
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Figure 11. Phone error-rate for an ensemble of networks with varying hidden layer size. The
connection probability is 25% (φ = 0.25) for all non-recurrent connections and the
connectivity parameter σ is 25 for all layer sizes. The fully connected network with 100
hidden units is included for comparison.

5.1.4 Connection pruning in trained networks
Connection pruning, as described in section 4.1, has no impact on the computational effort for
training. Instead it adds an additional training phase for retraining the connection weights after
pruning. However, it was found in our experiments that this training is much faster than the
first phase – a few epochs is usually enough for convergence. Figure 12 shows the phone
error-rate as a function of the aggressiveness of the pruning on the network with 600 units. It
is interesting to compare the error-rate for different pruning thresholds with the probabilit y
distribution of Figure 8. Note that the distribution deviates from the Normal distribution for
weights greater than about 0.075. It is also for pruning thresholds greater than 0.075 that the
performance starts to drop significantly.

Pruning can in some cases increase classification performance because the reduced number
of parameters can improve the network’s generalization abilit y. The simulations show an
improved performance after moderate pruning and retraining, but the cause is not clear; the
classification performance increased on both the training and test data. It is possible that the
cause of the improvement is that the disturbance due to the pruned connections caused the
ANN to escape from a local minimum of the error function. The phone error rate of this
pruned network is the best performing ANN of this study, therefore an evaluation on the
whole TIMIT test set was performed with this network. The result, 27.0% error rate is
included in Table 3.

An attractive feature of pruning is the reduced computational effort for running trained
networks. In  Figure 12 it can be seen that pruning with the weight magnitude criterion of
section 4.1 and the parameter α set to 0.05 yields a network reduction of about 50% without
reduction in performance. Because the number of connections is proportional to the
computational cost of running the network, the corresponding speed-up can be very important
in real-time recognition systems. It is notable that the most aggressively pruned network, with
only about 13,000 connections, performs the phoneme recognition task more successfully than
the fully connected network with about 75,000 connections.
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Figure 12. Phoneme recognition result for the original ANN with 600 hidden units (also
shown in Figure 12) of Figure 11, and for pruned versions after pruning and retraining.

5.1.5 Computational considerations
The original motivation for the experiments with sparse connection and connection pruning
was to reduce the time for training and speed up the evaluation of the networks. The
computational effort for performing the forward as well as the backward phase of the back-
propagation algorithm is dominated by a term proportional to the number of connections in
the network. Thus, the training time is proportional to the number of connections times the
number of epochs needed for convergence, and the evaluation speed is proportional to the
number of connections in the network.

The amount of computation for training different ANNs can only be compared in the
context of some termination criterion. In this study, the training was always terminated after
30 epochs of training with the TIMIT training. In this case, the amount of computation is only
dependent on the number of connections. A more sophisticated termination criterion may
consider the rate of improvement per epoch. By inspecting Figure 13, we see that the training
error function levels out after between fifteen and twenty-five epochs for all networks. Thus,
comparison based on only the number of connections may be slightly too simplistic. However,
the difference due to the number of connections is by far the most important factor. Compare
for example the sparsely connected network, with 100 hidden units, with its fully connected
counterpart. The training progress curves in Figure 13 are similar, but the fully connected
network has more than three times as many connections.

The total training time for the ANN with 600 units and 155,000 connections was about 11
days on an HP C180 workstation. Training times for the other ANNs are in proportion to their
number of connections.

The evaluation of the trained networks can be performed in real time or faster for all
networks with less than 110,000 connections. For example, the best performing network of
the study, the moderately pruned network in Figure 12 with 600 units and 109,000
connections, runs in 99% of real time on the HP C180 workstation.
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Figure 13. Training error as a function of number training epochs for six different networks.
The dashed line indicates the training progress of the fully connected network with 100
hidden units, and the other five lines are the progress for the other ANNs with varying number
of hidden units (the networks are the same as in Figure 11).

5.1.6 Test of the interpretation of activities as a posteriori probabilities
In section 2.6 it was shown that in theory, the output activities are estimators of the a

posteriori phoneme observation probabilit y. To test this empirically, statistics were collected
for the activities of a typical ANN of this study. The a posteriori probabilit y was estimated
from the target values for bins of activity ranges. Thus, for each bin, the relative frequency
was computed for each phoneme. Then the probabilit y estimated by the ANN was plotted
versus the relative frequency. Figure 14 shows the resulting histogram. The proximity to the
Bayes classifier function supports the assumption that the activities can be interpreted as a
posteriori probabiliti es. However, the ANN tends to assign too high probabiliti es when the
actual a posteriori probabilit y is above 0.3. This is a good ill ustration of a slight over-
adaptation to the training data. The deviation for both sets at the lowest bin is a reflection of
the large number of activities that have values much less than 0.05; the resulting observed
relative frequencies of about 0.01 are artifacts caused by uneven distribution of the data within
this bin.
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Figure 14. Estimated phoneme probability versus relative phoneme frequency. The frames of
the training and test data respectively have been partitioned into bins with different output
activity (in the RWH, [0;1] domain). The y-axis is the relative phoneme frequency computed
from the targets in each bin. The shown relative frequency is the averaged statistics over all
phonemes. The diagonal line is the optimal Bayesian classifier function. We see that the ANN
is very close to a Bayessian classifier on the training data but deviates slightly from the ideal
line for the test data.

5.2 Word recognition results on the WAXHOLM human/machine dialog task

The WAXHOLM demonstrator (Blomberg et al., 1993) is a human/machine spoken dialogue
system for tourist information about the Stockholm archipelago. More specifically, the domain
is boat traff ic timetables and information about hotels, camping grounds and restaurants. A
description of the ASR module of the WAXHOLM system is given in Ström (1996). In this
paper, the WAXHOLM database (Bertenstam et al., 1995a,b), collected in wizard-of-oz
simulations of the system, is used in recognition experiments to evaluate the hybrid
HMM/ANN system on the word-level as well as the phoneme-level. The utterances are
continuously spoken and the bigram perplexity is 28 for the test data.

The experience with the TIMIT database led us to train a network with the following
topology, 300 hidden units, 50% connectivity for connections from the input units, σ = 25 for
the recurrent connections and 10% connectivity for the connections to the output units. The
phone error-rate achieved is 25.2% and the word error-rate is 23.2%. For comparison, a fully
connected network with 125 hidden units was trained. As can be seen in Table 4, the fully
connected ANN performs worse than the sparsely connected ANN, in spite of the benefit of
12% more connections.

Our results can be compared with a continuous density HMM system (Högberg and
Sjölander, 1996), trained and evaluated on the same database as used in this study, yielding
25% phone error-rate, and later in (Sjölander and Högberg, 1996) 22.6% phone error-rate, and
only 14.7% word error-rate. All results are summarized in Table 4.

In contrast to the TIMIT database, the phoneme recognition is slightly worse for the ANN-
based system than the HMM. The reason is not clear, but the WAXHOLM database is smaller
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and has less contextual variation because of its domain dependent origin. However, it is the
difference in word recognition rate that is the most noticeable. Clearly, the recognition results
for the ANN system on the word-level are not equally competitive as on the phoneme-level.

One difference between our system and state-of-the-art HMM systems is that we do not use
context-dependent models that are likely to be more helpful on the word level. Context-
dependent models have been used in hybrid ANN systems with improved word recognition
rate as a result (Bourlard and Morgan, 1993; Kershaw, Hochberg, and Robinson, 1996). The
word error rate improvement reported by Kershaw, Hochberg, and Robinson, (1996) is about
19% (from 16% to 13%). Let us speculate that we would get the same reduction if context
independent models were introduced in our ANN system. In this case the error rate would still
be as high as 18.9% – significantly higher than for the HMM system. This indicates that there
is also some other difference that manifests itself in the discrepancy between the word and the
phoneme level.

The main difference in the application of the phoneme probabiliti es, between the word and
the phoneme level, is that on the word level small probabiliti es are frequently employed in
order to meet the word constraints from the lexicon. This happens much more seldom in the
phoneme recognition case, because of the weaker top-down constraints. If this is the criti cal
difference between the two levels, one can suspect that the estimation of small probabiliti es is
worse in the ANN than the standard HMM. This appears to be a plausible explanation, but it
is noteworthy that there is no evidence for that hypothesis in Figure 14, where instead it seems
as if small probabilities are estimated more accurately.

6 Conclusions
Pruning and sparse connection were utili zed to be able to train and evaluate large ANNs for
phoneme probabilit y estimation. Sparse connection made training of networks with large
hidden layers and an elaborate dynamic connection scheme possible. Wide time-delay
windows in combination with multiple time-delays in recurrent connections was used. A
localized sparse connection scheme for recurrent connections removed the quadratic relation
between the size of the hidden layer and the number of connections. This opened the
possibilit y to work with recurrent ANNs with large hidden layers. Without sparse connection,
the training would have required more computational resources than practically realistic.

The networks were evaluated on two different tasks: phoneme recognition on the TIMIT
database, and word recognition on the WAXHOLM database. The lowest error-rate achieved
on the core test set of the TIMIT database, 27.8%, compares favorably with systems using
other methods. The only lower error-rate reported is from another ANN based system
(Robinson, 1994). The word-level results on the WAXHOLM database are not as good as the
phoneme results. A continuous density HMM trained and evaluated on the same data as the

Baseline, fully
connected network,
125 hidden units.
98,175 connections.

Sparsely connected
network, 300 hidden
units.
86,903 connections.

Tri-phone CDHMM
recognizer..
(Sjölander and
Högberg, 1996).

phone error rate 27.5% 25.2% 22.6%

word error rate 24.1% 23.2% 14.7%

Table 4. Recognition results on the WAXHOLM database.
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ANN system performed significantly better. One reason for the contrast is that context-
independent models are used, but it is not clear if this accounts for the whole difference.

Pruning reduces the computational demands of trained networks, which is of great
importance in real-time recognition systems. A reduction by 50% can be accomplished
without degraded performance. Also, moderate pruning improves the performance, either due
to an increased generalization abilit y or because the network is allowed to escape from a local
minimum of the error function.

Sparsely connected networks were shown to utili ze the free parameters more eff iciently
than fully connected ANNs. In the phoneme recognition experiments, fully connected
networks were clearly outperformed by their sparsely connected counterparts with equal or
fewer connections. For example, in the TIMIT experiments, a network with only 13,000
connections was more successful than the fully connected network with 75,000 connections,
and a sparsely connected network with less than 75,000 connections achieved as much as 21%
lower phone error-rate than the fully connected ANN.

The toolkit used for all ANN simulations, including source-code and documentation, is
freely available by anonymous ftp on the Internet. By making the software freely available, the
results of the experiments can be validated by other researchers, and by giving easy access to
an ANN toolkit for speech recognition, we wish to promote further development in the field.
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Appendix: The NICO neural network toolkit
 All ANN simulations of this study are performed using the NICO (Neural Inference
COmputation) toolkit. It is a software only solution, written in portable ANSI C code and the
complete toolkit, including source code, can be downloaded from the World Wide Web home-
page http://www.speech.kth.se/NICO/index.html. The home page also contains the latest
updated on-line documentation.

In this appendix, the commands for building and training the ANN for the TIMIT
experiments are presented. Frame level classification performance can be evaluated with the
CResult tool. The dynamic decoding however, is not included in the NICO toolkit, and
therefore additional software is necessary to perform evaluation on the phoneme-segment and
word levels. In this case, the Excite tool can be used to compute and store the output activities
in one of several supported data formats.

A.1 Structuring the database

The training tools, feature extraction and target generation tools operate either on the data-
files of one utterance or on a set of utterances specified in a script-file. All files corresponding
to the same utterance should have the same base-name. For example, if the wave-form sample
file is called homer.wav then the names of the feature file and the phoneme target files can be
homer.mfcc and homer.targ. Thus, specifying the base-name and the appropriate file-
extensions and directories for the different types of data, is enough to give the tools
knowledge of where to find data. Typically, a command-line argument to a tool specifies the
base-name and the various extensions and directories are given as command-line options to
the tool. A script-file for processing a set of base-names is invoked by the option -S. In this
case, the argument that was otherwise the base-name is interpreted as the name of the script.
The script-file itself is a list with one base-name per line.

The described conventions for data-files imply that all files of each type, e.g., all wave-
form files, must be in the same directory. Although this flat structure is often convenient, it
causes problems when the toolkit is used with a database with a different inherent structure,
such as the TIMIT database. A solution is to create new directories for the interesting file-
types and make symbolic links to the physical files residing in the non-flat database. An
example of a c-shell script file that creates the necessary links are shown in Table 5.

#!csh

# set this variable to the directory of the TIMIT database
set TIMITDIR = CDROM/TIMIT

# set these variables to where you want to store links to
# wave-form files and phoneme label files
set WAVEDIR = ~/waveform
set PHONEDIR = ~/phmlab

foreach  CATEGORY  ( ${TIMITDIR}/train  ${TIMITDIR}/test )
foreach  DIALECT  ( ${CATEGORY}/dr? )

pushd  ${DIALECT}
foreach  SPEAKER  ( * )

pushd  ${SPEAKER}
foreach  FILE  ( *.wav )

ln -s ${DIALECT}/${SPEAKER}/${FILE} $WAVEDIR/${ SPEAKER}_${FILE}
end
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foreach  FILE  ( *.phn )
ln  -s  ${DIALECT}/${SPEAKER}/${FILE}  $PHONEDIR/${ SPEAKER}_${FILE}

end
popd

end
popd

end
end

Table 5. This script is used to create symbolic links to the wave-form and phonetic label files
of the TIMIT database.

A.2 Feature extraction
The tool Melfib implements a standard feature extraction, based on a Mel-scaled filter-bank
computed from the FTT spectrum. The -c option selects cepstrum features instead of f ilter-
bank. See section 3.1, or (Ström, 1996) for a more extensive discussion of this procedure. In
the following example it is assumed that the directory ~/waveform contains links to
waveform files of the TIMIT database, all_utterances is a script-file with the base-names of
the utterances to process, and ~/mfcc is the directory to for storing the feature files.

>Melfib -S -Fnist -n24 -c12 -E -e0.97 -d ~/mfcc -xmfcc -p ~/waveform -qwav
all_utterances

A.3 Generation of phoneme targets
The phoneme target for each 10 ms frame of the feature files can be extracted from the
phonetic transcription files of the database. The tool Lab2Targ does this by checking the
length of the parameter files and using the time-marks of the transcription files to compute the
targets for each phoneme output unit at each frame (see also section 2.1). In this example, it is
assumed that the directory ~/mfcc contains the parameter files created in the previous section,
~/phmlab contains links to the phonetic transcription files of the TIMIT database,
all_utterances is a script-file with the base-names of the utterances to process, and
~/phmtarg is the directory for storing the target files. The names of the 61 phonemes should
be supplied in the file phoneme_set, one phoneme per line.

>Lab2Targ -S -p ~/phmlab -qphm -d ~/phmtarg -x targ -P ~/mfcc -Qmfcc -Ihtk
-Ltimit -Fcodebook phoneme_set 13 all_utterances

A.4 Specifying the network structure
The toolkit has many commands for building the structure of the networks. Here we give the
commands with a minimum of commentary. Detailed information about the commands is
found in the toolkit documentation. The commands for building a network with 300 hidden
units, connectivity 25% in connection sets A and B, and connection parameter σ=50 for the
recurrent connections (see section 5.1) are as follows.

>CreateNet timit300.rtdnn timit300.rtdnn
>AddStream -x mfcc -d  ~/mfcc -F htk 13 r CEP timit300.rtdnn
>AddGroup cep timit300.rtdnn
>AddUnit -I -u 13 cep timit300.rtdnn
>LinkGroup CEP cep timit300.rtdnn
>MakeDiff cep diff1sttimit300.rtdnn
>MakeDiff diff1st diff2nd timit300.rtdnn
>AddStream -x targ -d ~/phmtarg -Fcodebook timit300.rtdnn -S phoneme_set 61 t

PHONEME timit300.rtdnn
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>AddGroup phoneme timit300.rtdnn
>AddUnit -o S phoneme_set phoneme timit300.rtdnn
>LinkGroup PHONEME phoneme timit300.rtdnn
>SetType -O cross phoneme timit300.rtdnn
>AddGroup param timit300.rtdnn
>Move cep network param timit300.rtdnn
>Move diff1st network param timit300.rtdnn
>Move diff2nd network param timit300.rtdnn
>AddGroup features timit300.rtdnn
>AddUnit -u 300 features timit300.rtdnn
>Connect -D -1 5 -s25 param features timit300.rtdnn
>Connect -D -1 1 -s25 features phoneme timit300.rtdnn
>Metricnct -s25 -D 1 3 features features timit300.rtdnn
These commands creates and modifies a binary file timit300.rtdnn holding all parameters

of the network. The created network can now be examined with the Display command.
Display has many options and can display all properties of a network. Details are found in the
toolkit documentation. Enter for example the command

> Display timit300.rtdnn
to see an overview of the network (number of connections and units etc.).

So far we have created an ANN with simple uncoupled output units. The following
commands alter the output layer to a softmax activation function (see section 2.7).

>AddGroup softmax timit300.rtdnn
>SetType -x phoneme timit300.rtdnn
>SetType -n phoneme timit300.rtdnn
>Move phoneme network softmax timit300.rtdnn
>Rename phoneme softin timit300.rtdnn
>AddGroup phoneme timit300.rtdnn
>AddUnit -r0.0 -o -S phoneme_set phoneme timit300.rtdnn
>Remove -c phoneme bias timit300.rtdnn
>SetType -m phoneme timit300.rtdnn
> SetType -O cross phoneme timit300.rtdnn
>Move phoneme network softmax timit300.rtdnn
>Pipe -w1.0 softmax.softin softmax.phoneme timit300.rtdnn
>AddGroup internal timit300.rtdnn
>AddUnit -r0.0 softsum timit300.rtdnn
>Move softsum network internal timit300.rtdnn
>Move internal network softmax timit300.rtdnn
>SetType -d softmax.internal.softsum timit300.rtdnn
>Connect -w1.0 softmax.softin softmax.internal.softsum timit300.rtdnn
>Connect -w1.0 softmax.internal.softsum softmax.phoneme timit300.rtdnn
>NormStream -c 1 0 -s PHONEME timit300.rtdnn
>LinkGroup PHONEME phoneme timit300.rtdnn
>Protect -R softmax.softin timit300.rtdnn
>Protect -S softmax.phoneme timit300.rtdnn
>Protect -P softmax.internal timit300.rtdnn

A.5 Training
The command for normalizing the input units is

>NormStream -S -s CEP -d1.0 timit300.rtdnn train_utterances
and the normalization of the delta and delta-delta features is performed by
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>NormGroup -S -g diff1st -d1.0 timit300.rtdnn train_utterances
>NormGroup -S -g diff2nd -d1.0 timit300.rtdnn train_utterances

where train_utterances is a script holding the basenames of all training utterances. Note that
these commands collect statistics from the whole training database, and therefore take some
time to run.

The most important training tool of the toolkit is BackProp. It implements the training
scheme described in section 2. In this example we assume that train_utterances is again a
script with the training utterances and validation_utterances is a script with the validation
utterances.

>BackProp -S -m0.7 -g1e-5 -i30 -F 20 30 -p logfile.log -B 0.5 10 -V
validation_utterances PHONEME timit300.rtdnn train_utterances

A.6 Frame-level evaluation
Althogh the toolkit does not have tools for evaluation on the segment level, it is possible to
evaluate the frame classification performance, i.e., how frequently the correct phoneme has
the highest output activation. The tool to use is CResult. This example is an evaluation of the
classification of the 61 phonemes. It is assumed that test_utterances is a script with the test
utterances. The CResult tool has many options, e.g., confusion matrix, top-N evaluation, etc.
Details can be found in the toolkit documentation.

>CResult -S timit300.rtdnn test_utterances

A.7 Connection pruning
The connection pruning of trained networks that is described in 4.1 is performed easily with
the Prune tool. For example, pruning the network timit300.rtdnn with α = 0.1, and β = ∞, the
following command is used.

>Prune -w 0.1 timit300.rtdnn


