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Abstract

This paper presents new methods for training large neural networks for phoreme
probability estimation. An architedure cmbining time-delay windowvs and
reaurrent conredions is used to capture the important dynamic information d the
speed signal. Because the number of conredions in a fully conreded reaurrent
network grows super-linea with the number of hidden unts, schemes for sparse
conredion and conredion pruning are eplored. It is found that sparsely
conreded networks outperform their fully conneded counterparts with an equal
number of conredions. The implementation d the wmbined architecdure and
training scheme is described in detail. The networks are evaluated in a hybrid
HMM/ANN system for phoreme recgnition onthe TIMIT database, and for
word recognition onthe WAXHOLM database. The adieved phore aror-rate,
27.8%, for the standard 39 phoeme set onthe cre test-set of the TIMIT database
isin the range of the lowest reported. All training and simulation software used is
made fredy available by the aithor, and detail ed information abou the software
and the training process is given in an Appendix.
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1 Introduction

Speed reaognition was one of the first problems that artificial neural networks (ANNS) were
applied to duing the rapid spread of ANN models in the 1980s. ANNs have been used for
recognition d large units like words diredly (e.g. Strom, 1992 English and Boggess 1992
Li, Naylor, and Rossen, 1993, bu attempts to recognize smaller units like phoremes have
been more succesdul. Several different methods exist for combining the ANN classgficaion
of sub-units into sequences that constitutes words. A few of the more well-known methods
are: “Hybrid HMM/ANN Architedure” (Bourlard and Well ekens, 1988, “Linked Predictive
Neural Networks’ (Tebelskis and Waibel, 1990, “Hidden Control Neural Architecure”
(Levin, 1990, and “ Stochastic Observation HMM” (Mitchel, Harper, and Jamieson, 1996. Of
the mentioned methods, the hybrid HMM/ANN architecture is the most wide-spread today.

ANN systems und sputedly solve some problems better than all other methods in automatic
speed reagnition. The phoreme reagnition rate on the TIMIT database reported by
Robinson (1994 is wveral percent higher than that of all other systems — alarge diff erencefor
this type of test (a comparison d different approachesis given in Table 3, sedion 5.1). ANN
solutions are dso typicdly compad, i.e., have asmall number of parameters, and dfer fast
deading compared to standard HMM systems. Still, for the last yeas, the reseach adivities
on ANNSs for speed recognition have nat by far been as intensive & for the prevailing HMM
paradigm. Preference for a well-established techndogy and the relatively few equaly
excdlent results reported onthe word-level are possble reasons for the mild interest in ANN
solutions. However, the evaluation d the SQALE-projed (Steeneken and van Leauwen, 1995
is an example of a cae where hybrid HMM/ANN techndogy significantly outperforms date-
of-the-art HMM systems provided by leading research sites for large vocabulary tasks.

A different reason for the limited spread of ANN solutions can be problems with the
network training, i.e., efficiently and robustly determining the parameters of large networks.
For example, the reaurrent network used by Robinson is trained with spedal paralléel
hardware, and a rather complex training heuristic is used with several ad hoc parameters to be
determined empiricdly. Reaurrent conredions are of course nat the only path to good resullts,
but other existing solutions have different problems. An ANN architedure without reaurrent
conredions is used with good results by Bourlard and Morgan (1993. Instead they use time-
delay windows (Waibel et al., 1987 to cgpture the tempora cues of the speed signa. The
ladk of reaurrent connedions make the training algorithm more robuwst, bu very large
networks are used to achieve good results, and therefore the available computing resources
limit the performance of the system.

Contemporary high performing ANN solutions typicdly require more mmputation for
training than the wide-spread maximum likelihood (ML) training for the standard HMM
(Rabiner and Juang, 1993 Leeg 1989. Comparing standard HMM and hybrid HMM/ANN
training in more detail, a differencein computational complexity can be noted. The anount of
computation increases faster for ANN training when the size of the model is increased. When
more training datais avail able for training an HMM system, typicdly more context-dependent
models are introduced. However, in a somewhat simplified view’, the training time is
independent of the number of models, and propational to the anourt of training data. Thisis
becaise eab modd is trained oy on a partition d the data. In the cae of an ANN system,
the cgadty is determined by the number of hidden urits, and when more training data is

! This is not true if the free parameters of the HMM are increased by some other means, e.g., increasing the
number of components per Gaussian mixture. We have also made the approximation that the Baum-Welsh
algorithm converges in the same number of iterations independent of the size of the training data, and on the
number of context dependent models.
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avail able, more hidden urits are typicdly introduced. The mmputation for training increases
faster than for HMM training, because the eitire ANN is trained on al data. Again in a
simplified view?, thetraining timeis propartional to the product of the anourt of training data
and the size of the ANN (the number of conredions). Thus, in comparison with HMM
training, the anourt of computationfor ANN training is more dependent on the model size. In
particular for reaurrent networks this is a problem becaise the number of reaurrent
connections grows quadratically with the number of hidden units.

In part, the scding properties of ANN training originate from the inherent discriminative
nature of the training, but this is nat the whale truth. In this paper we propcse new methods
for robust training of large, high performance ANNs based onsparsely conreded networks. In
a sparsely conneded ANN, the hidden layer can be dlowed to grow withou necessarily
increasing the number of conredions propationally. The problem with the quadratic relation
between urits and conredions in readrrent networks is addressed by introdwing locd
conredivity for the reaurrent conredions. The locd conredivity has the dfed that units
close to ead aher have higher likelihood d being conreded. Thus, it promotes the
development of groups of units performing sub-tasks of the problem. The sparse mnredion
schemes used, and arelated concept, connedion pruning, are discussed in sedion 4. In sedion
2, areview of the theory of feed-forward ANNSs is given together with the definition o the
particular network architedure used in this paper, and details of the training algorithm.
Recognition results on the TIMIT and WAXHOLM databases are reported in sBction

The HMM paradigm has currently the advantage of alarge mature body of easily available
software (e.g., Yourg et al., 1995. To promote further development in the hybrid HMM/ANN
field, and to make reproduction d our results easier, the software toalkit used for training and
runnng the neura networks of this gudy is made fredy available. In the gpendix, the
software is described and instructions on hav to oltain a cwpy are given. Information abou
the simulations of this study is given in detail to make reproduction of the results possible.

2 Basictheory

This sdion describes the basic theory behind the dynamic feed-forward artificial neural
networks used in the study. Because we wish to make replicaion o the results graight-
forward, the description is rather detailed. Most of the material is well-known badkground
knowledge, covered in textbooks on ANN computing (e.g., Bishop, 1995 o Ripley, 1996.
Detail s of the unified implementation d reaurrent units and time-delay windows (Sedion 2.2)
as well as the introduwction o multiplication urits and unts with several different non
linearities can be of interest also for readers with some experience in the field.

2.1 Feed-forward networks

Feal-forward networks are directed acyclic graphs, i.e., the adivities of al artificial neurons,
heredter cdled units, can be computed in ore iteration, and there is no feadbad that would
make the adivation d aunit depend reaursively onits own value. A network consists of input
units, hidden unts and ouput units and conredions between them. In the popuar analogy
with a biologicd nerve-system, the input units are “sensors’ whaose values are determined by
“the environment”, the hidden unts corresponds to internal neurons and the output units can
be thought of as neurons of a motor system, controlli ng the organism’s resporses to the input
from the eavironment. This analogy can be very inspiring, but in pradice feed-forward ANNs
are used simply to approximate cmplex inpu/output maps, with no knavn explicit formula

% This is true only if the number of training epochs needed for convergence of the training is independent of the
ANN's size, and on the amount of training data. This matter is discussed further in Seicton
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but a grea ded of charaderizing data. The strength of ANN models is the weak constraints
they put on the mapping; It has been shown that, given a sufficient number of hidden urits and
charaderizing data, feed-forward ANNs with ore layer of hidden urits can approximate aly
boundd function ona mmpad set with arbitrary acairragy (e.g., Hornik, Stinchcombe and
White 1989. In pradice however, the performanceis limited due to: i) problems finding the
set of conredion weights that gives the optima network and ii) the size of the available
database.

In this paper we @ncentrate on mappings defining a “1-of-N” clasdficaion d the input
patterns. Each inpu pattern o the training database is asdgned to ore of N classs. The target
values for the N output units are -1.0 for all units except the one wrrespondng to the corred
classwhose target is +1.0. The N classs are the phoremes and the inpu patterns are feaure
representations of the short-time spedra of the sound wave. This will be @vered more
thoroughly in sectiof.

Except for some speda units, adivitiesin ou framework are cmmputed in the same way as
the dassc ANNs of (Rumelhart, Hinton and Williams, 1986, bu the sigmoid function is
replacel by the computationally more anvenient tanhyp function. Thus, for the tanhyp urits,
the activatiors, of uniti is defined by:

a = tanh(net,) 1)
where
net = > w;a, 2

and w; isthe conredion weight from unit j to unt i. It is easy to show that besides the dange
to an adivation function with a symmetric range [-1;1], this is equivalent to a linea
transformation of the weight space. The tanhyp function can be expanded as follows:

3
tanh%§+l nx x g x (3)
1% -e?2 [J e? 1 . )
> :E — . +1§: - < = 1t = :sgrnmd(x)
@eE +e 2 e2 +e 2 ©
Thus, the transformation,
(& = Za'i,RHW -1 (4)

i~ 2Wji,RHW
where RHW indicates parameters of the dasdc network, transforms a dassc network based
on sigmoid units to a network with tanhyp non-linearity.

It is ometimes convenient to work also with urits withou any nontlineaity and urits with
other nontlineaiti es. Because these units are not defined in the dassca networks, the weights
of conredions to them are not affeded by the transformation between ou adivities and the
classcd RHW domain of (4). Inthe experiments of this gudy we use linea units, exporential
units, inverter units (1/x) and multiplication unts in addition to the usual tanhyp and input
units. Moreover, eat network has one spedal-purpose unit that has a mnstant adivity of 1.0.
Conredions are by default added from this unit to al tanhyp urits — the dfed is identicd to
that of a unit-bias. Multiplication unts are dlightly more cmmplicaed than the other types and
require the computation ¢) instead of(2). In summary, unit activities are computed by
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tanh(neti) if unit i isatanhyp unit 5)

if unit i isalinear unit

I
2
o

if unit i isthe biasunit

I
3
8

if unit i isan input unit

exp(neti) if unit i isan exponential unit

s Sk U 3
I
H

& =1/net, if unit i isan inverter unit

O

% = prod, if unit i isamultiplication unit

where

prod, = [1a, (6)

j.unitj feedsinto unt i

in analogy with (2).

The target values for the output units are 1.0 for the unit correspondng to the rred class
and -1.0for all other units. The objedive function for the bad-propagation training is based
on the aossentropy distance in the RHW domain (Solla, Levin, and Fleisher, 198§. If the
target output adivation for unit i is 7,y in the RHW domain, the contribution, e, to the cross
entropy transformed to the tanhyp domain can be computed from (4):

€ :(1_Ti,RV\H)Iog(1_ai,RV\H)+Ti,RV\H log(a'i,RV\H): (7)

B -

Dogélig ifr, =-1

- T -a L+l c+1 9 2 '

“H2 Qog 2 @'gz Qoggz @:D ELHQ ifr =1

Eog 2 I Ti -

The objective function, E, is the sum of g for al units and input patterns, so the derivative

with respect to the activity is
K] when the unit isnot an output unit 8)

O
de :EL/(& +1) when the unit correspondsto the correct dass

dai
%/ (a -1) othewis

Now we compute the derivative with respect to the connection weights in the standard way
using the chain rule to get the recursive equations:
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E(l (1+a )oacknet, ifi isatanhunit (9)
—backnet if i isainverter unit
_ &
T onet, mEXp( . Jbacknet, if i isa exponential unit
et if i isaninput, linea,
Eaac ‘ multi pli cation or the bias unit
where
_dE a, (10)
backneti = _d_ai + Z 5]- V\/i]- + Z 6j ;I
unit j isnot a unit j isa
multiplication unit multiplication wnit
and the derivatives with respect to the weights are:
= (11)

The derivatives of (11) can be used for gradient decent type minimization o E. The detail s of
this are filled out in sectioB.4.

Note that if an ouput unit has no ou-flowing conredions, then dE/da; cancds one of the
fadorsof ¢ in (9), andtheresulting & is smply the diff erence between g; and the target (+1.0
for the correct class and -1.0 otherwise).

2.2 Recurrent connections and time-delay

Dynamic fedaures of speed such as formant movements, that are known to be of importance
for phoreme dassficaion (e.g., Fant 1969, are naot cgptured by the short time spedrum
representation wsed as inpu to the network. Therefore, phoretic dassficaion d short-time
spedra can be grealy enhanced by considering also the @ntext of neighbaing spedra. A step
in this diredion was taken by Waibel et al. (1987 when they introduced time-delay neural
networks (TDNN). In this paper we denote by TDNN, all network architedures where the
units are onreded to untsin lower layers with time-delayed conredions  that the adivities
depends on the adivities of lower layer units in a finite time-delay window (Figure 1 (left)).
The first experiments with TDNN succesdully showed an improved classficaion d stop
consonants where it is well known that the dynamic formant patterns are of grea importance
Later the achitedure has been successully applied to complete phoreme inventories and used
in hybrid HMM/ANN speedt reaognition systems with good results (e.g., Bourlard and
Morgan, 1993; Cohesdt al., 1992).

A different course to include the mntext in the dassficaionisto conred unitsin the same
layer with a delay of one time-step —so cdled reaurrent conredions (Figure 1 (midde)). The
network still remains a feed-forward network because the reaurrent connedions are delayed.
This approach dffers from TDNN in that the adivity of a unit at a particular time depends
reaursively on adivities in its layer and lower layer at al previous times. Networks with
reaurrent conredions are cdled recurrent neural networks (RNN) (Rumelhart, Hinton and
Willi ams, 1986 or dynamic neural networks (Pealmutter, 1990 and thisis currently the most
succesdul architedure for phoreme reaognition (Robinson and Fallside, 1991 Rohinson,
1994).

TDNNs and RNNs have much in common; in perticular, bah use time-delayed
conredions to incorporate mntext into the dassfication. In fad, if the cnredions of RNNs
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are dlowed to have multiple time-delays instead of just one time-step, the resulting network
has all the modeling power of both architedures. This unified architedure, RTDNN
(Reaurrent Time-Delay Neural Network) introduced by Strom (1992, is used in this gudy
(Figurel (right)).

The delayed conredions have the dfed that the resporse of an inpu pattern is delayed
several time-paints in the output units. One feasible way to tadle this problem isto delay also
the target values for the output units (Robinsson and Fallside, 1991 Robinsson 1994. In the
RTDNN framework, we have chosen to use look-aheal conredions instead of delaying the
targets. Look-ahead conredions let a unit depend onthe adivity of other units at future times
(indicated by a positi ve superscript, e.g., z'%, in Figure 1). This concept is often used in TDNN
architedures, bu not possble to implement in RNN architedures becaise rearrent
conredions must be delayed in feed-forward networks. Look-ahead conredions force the
computation d some unit adivities to be delayed, bu the network is dill a feed-forward
network as long as no unit’s activity at a particular time depends on its own activity.

input input

Figure 1. Different types of dynamic networks. The z* operator indicates that the connection
is delayed x time-frames. For simplicity, the input, hidden, and output layers have only one
unit each in thisfigure.

Left: time-delay network (TDNN). The units in higher layers have access to a time-delay
window of the activities of units in lower layers. Note that both time-delay and look-ahead
(Z™) connections are used. A consequence of this is that computation of activities in units in
higher layers must be delayed until the activities of the |ook-ahead connections are known.

Middle: Recurrent network (RNN). The hidden units are recurrently connected back to the
hidden layer. In this architecture, the activities recursively depend on the activities of all
previous time-frames.

Right: The combined architecture (RTDNN) with both time-delay windows, and recurrent
connections.

It is not hard to show that any feed-forward network with look-ahead conredions has an
equivaent network with no look-aheal, bu delayed targets insteal. In the pseudo-code of
Table 1 we show this by constructing such an equivalent network, and in the processwe dso
get the order in which unt adivities must be computed. In fad, the @nstructed equivaent
network is the one used in the actual computer simulations.

The reason for introducing the extra cwmplication d working with two separate network
representations is that look-ahead conredions are more intuitive and simplify the network
design. For example, if one deddes to use awider time-delay window or change the dynamic
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structure in some other way, it isunrecessary to seled or compute anew appropriate delay for
the target values. This is instead handed automaticdly in the mnversion pocessoutlined in
Table 1. In the simulations, the target values are delayed because that is the computationally
most advantageous representation, bu this is hidden from the network designer who can focus
on selecting a dynamic structure suitable for the particular problem.

» Letal units of the new, equivalent network have anew property cdled delay and initialize
it to zero for all units.

Let the delay of uniit bed’;.

Letcount=0
do{
for each uniti {
for each conredion wj; 4 in the origina network flowing to unt i from unit j with
delayd {

}
}

Let count=count+1

if d',-d>d then letd'=d’;+d

}

until no celay changes during a whadle iteration a court is greder than the total number of
units

* If the loop was terminated becaise court grew larger than the number units, the network
canna be afeed-forward network and thus the design is in error. This chedk shoud be
made each time new connections are added to a network.

» Sort the units in order of increasing delay. This is the order in which the units are
computed in the simulations.

* Modify the delays of the equivalent network so that for ead conredionw, 4 in the original
network, the arrespondng conredionisw'; 4, whered’ =d'; - d’; + d, i.e, the difference
in the two unt’s delays is taken into acourt. It is easy to seefrom the construction d the
unit delays that no conredions in the equivalent network can have negétive delay (look-
ahead).

» Target values for output units are delayed by the respective unit’s delays.

Table 1 Algorithm for converting afeed-forward network with look-ahead conredions to ore
with delayed targets. A checkis also made that the network is indeed a feed-forward org; if
the \ariable ‘court’ grows larger thanthe number of units in the network, there must be some
loopin the network that allows a unts’ activity to depend onits own value, andthe network is
therefore not a feed-forward network.

The equations of sedion 2.1 must be generali zed to take dynamic conredions into acourt.
In the RTDNN framework,(2), (5) and(6) are generalized to
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%3” — tanh(neti,t) if unit i isatanhyp unit (12)
H
(A, = net;, if unit i isalinear unit
H
B, =10 i urit i isthe biasurit
H
h, =clamped if urit i isaninput unit
H
Eﬂ- - exp(net. ) if unit i isan exponential unit
)t it
H
Ea‘t =1/net;,  if unitiisaninverter unit
H
Eb“ = prod, , if unit i isamultiplicaion unt
net;, = ijidaj,(t—d) (13)
J
prod,, = rl &, (t-a) (14)

j, unit j feedsinto urit i

where w;, is the conredion weight for the cnredion from unit j to unt i with delay d
(possibly negative for look-ahead) amdis the activity of unit at timet.

2.3 Back-propagation through time

In the previous sdion the forward equations were extended to allow for time-delayed
conredions in a rather straight-forward fashion. In this dion we focus on the badkward
equations, i.e., the computation d the derivatives of the objedive function, E, with resped to
the conredion weights. Following the formalism of the previous ®dion, (9), (10) and (11
can be generalized as follows:

gl— aj't)(1+ a“)backneti't if i isatanhunit (15)
E = 7 7backnet, if i isainverter unit
5| = - = 1t
1T anet,  eep(a, Jpacknet,, if i isa eponential unit

Eb - if i isaninput, linea,

u aCKNEY; multi pli cation or the biasunit
where

a. 16
baCkneti‘t == dE + Z 5j+dvvij,d + Z 5j+d e ( )
da , £ M &,
mﬁll?ilrglli Ith?gﬁlinit mul tiu;;]llitcjalisoi wnit

where the two sums together have one term for ead conredion flowing out from unit i.
Further, the derivatives with respect to the connection weights are generalized to:

10
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7= 2
=-3 0. &
g e

=1,

(17)

wheret is the time index of adivities and tp and t; are the boundxries of the sequence Recdl
that in the network used in the computer simulations, all delays d are non-negative. This has
the coonsequencethat (15) describes a reaursive set of equations where the §'s are mmputed
in reverse order of time, t, hence the name badk-propagation through time, (Rumelhart, Hinton
and Williams, 1986; Pearlmutter, 1990).

A way to visuali ze badk-propagation through time is to draw the spatial dimension d the
network in ore dimension, e.g., line up al units in ore olumn. Then unfold the network in
the time dimension, i.e., draw one mlumn o units for ead time point. Figure 2 shows a very
smple example of such an urfolded retwork. The unfolded version d the network is
structuraly similar to a network with no delays but as many layers as there ae time points.
The important difference is that the conredion weights are shared by al conredions that
correspondto the same cnredionin the original network. Badk-propagation through time is
equivalent to normal back-propagation with this additional constraint on the weights.

time

Figure 2. A simple dynamic network (left) and the same network unfolded in time (right)
where the nodes a-d are duplicated for each time point. Arcs labeled Z* indicates that the
connection is delayed x time points. It is easy to see in the right figure that the network is
feed-forward because all arcs flow from bottom left to upper right.

2.4 Weight updating scheme

Training an ANN using the bad-propagation paradigm is an ogimization poblem, i.e,
finding the set of conredion weights that minimizes the objedive function E. The badkward
equations (15) -(17), provide us with the derivatives of the objedive function with resped to
the conredion weights which makes gradient descent methods feasible. However, gradient
descent optimization is a very broad classof methods and it is the particular weight updating
scheme (based onthe gradient) that determines the successor fail ure of an implementation o
the dgorithm. In ou experience, the dassc stochastic weight updating scheme by Rumel hart,
Hinton and Willi ams (1986, with some modificaions, continues to be agood choice for
problems with a large amount of training data. It can be written
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.
Bwi ™ = ndw D 4y — -

1
\Mj (n+l) — \NIJ (n) + AVVU (n)

where superscript (n) indicaes a parameter after iteration number n and y and n are the gain
and momentum parameters respectively.

There ae many well-known methods that utilize arvature information for the
optimization. Genera optimization methods, e.g., Newton's method @ conjugate gradient
methods (see for example Luenberger, 1989 can be gplied, as well as more or less
spedalized methods for ANN-training like QuickProp (Fahlman 1988, and applicaion o
Levenberg/Marquardt’s method, Levenberg (1944, Marquardt (1963. However, it is non
trivial combine these methods with stochastic goproximation algorithms, where weights are
updated before the whaole training data is processed (an epoch). In the simple updating scheme
of (18), networks withou delayed conredions can be updated after every inpu/output pattern
— so cdled pattern upditing. Although the updating is based on an approximation d the
gradient computed from only one pattern, the dgorithm will still converge if the gain is snall
enough (and in many cases much faster than with epoch updating).

The picture becomes more complicaed in the cae of badk-propagation through time
because the derivatives depend nd only on the arrent pattern, bu on the whole sequence of
patterns. We have alopted the goproximate scheme to updite the weights every N frames, i.e.,
approximate the derivative based onsub-sequences of the training data. This method hes also
been used by Robinson (1994 and is described in more detail in Table 2. The gradient
computed in this manner is nat only an approximation becaise it is based ona small number
of time-points — it is also approximate becaise the 0 's of (15) adually depend onthe unit
adivities at all following points (not just the ones computed so far). The gproximation is
clealy worse if the weights are updated more frequently, bu on the other hand it is desirable
to updhte the weights as often as posshble to speed upthe process In the simulations of this
study, weights are updated every 20-30 time points. This choice was made dter some
preliminary experiments and is intuitively reasonable & it corresponds roughly to the length
of asyllable. It isalso anumber similar to that used by Robinson (1994. The exad number of
frames between eat updite is chosen randamly from a square distribution between 20 and
30, this has the effect that the points of update are different from epoch to epoch.

1) Lettp=1

2) Letstep be an integer randomly chosen from the square distribjzpag.
3) Lett, =ty + step

4) Compute unit activities usin@.2) and (13) with the given, andt,

5) Compute derivatives backwards frasto t, using (15) - (17).

6) Update connection weights according(tts).

7) Letto=1t,+1

8) Goto step 2

Table 2. Weight updating scheme for back-propagation through time. The random step-
length in step 2 makes the update points differ from epoch to epoch.

We have dtill not discussed the dhoice of the parameters y and . An owersight in the
famous work by Rumelhart, Hinton and Willi ams (1986 is that they let yand n be constants.
It is well-known from statistics theory that badk-propagation training with stochastic updeting,
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converges to a locd minimum of E, orly if a few constraints on the decay of the gain
parameter are fulfilled. An survey of results in the statisticd analysis of ANN leaning
schemes is given by White (1989. In sedion 4.2 é his survey, the statisticd properties of
stochastic updating is discussed and recessary condtions for convergenceis given. In ancother
study, Juang and Katagiri (1992) give the following conditions for convergence:

iy(n) — o
NTE
r;)[y ] < 00

(19)

where superscrigh) again indicates the parameter after iteration numiferg

Alsoin pradiceisit fruitful to let the gain parameter deaease during the optimization. We
have cmbined this feaure with crossvalidationin a manner similar to Bourlard and Morgan
(1993. The ideais to deaease the gain parameter every time the objedive function fails to
deaease on the validation set. To be more spedfic, the training data is partitioned into a
training set and a smaller validation set. The training set is used for badk-propagation training
with weight updating aceording to (18), bu after eat epoch, the objedive function is
computed for the validation set too. This is dore using only the forward equations, i.e.,
withou updating the weights. The objedive function for the validation set is recorded for eat
epoch and whenever it failsto deaease, the gain parameter yis multiplied by a constant fador
a < 1. In this studyr is always 0.5.

We gpredate that the decay of the gain parameter and the aossvalidation pocedure ae
two separate @ncepts and that it would therefore be more degant to control them
independently. However, in pradice the two are dosely related, and the described strategy
have resulted in fast accurate optimization for the phoneme probability estimation task.

The momentum parameter, n O [0, 1], controls the smoothing of the gradient estimates,
and can have a onsiderable dfed on the mnwergence rate. In the simulations presented
below, n is always 0.7.

2.5 Weight initialization

It isclea that the initial values of the mnredion weights are important for the performance of
the bad-propagation training. The dgorithm finds one particular locd minimum of the
objedive function, and the particular minimum found dapends heavily on the starting point in
the search space i.e, the initial connedion weights. It is common pradice to initialize the
weights to small randam numbers (e.g., Fahiman, 1988. This implies that sigmoid and tanhyp
units operate in the linea region d the nonlineaity. In ou experiments, the weights are
initialized to square distributed random numie@sl; 0.1 (but see also sectid@2).

2.6 Interpretation of the output activation values

It seems intuitively clea that reducing the eror function E improves the dassficaion
performance of the ANN. However, it is esential for the understanding of the ANN classfier
to formalize this nation. For our nedls, it seems undto define the best possble dassfier to
be the Bayesian discriminant function. Any function that implements the dassficaion
procedure: “asciate the inpu observation with the dass that has the highest a posteriori
probability”, constitutes the Bayesian dscriminant function. One obvious implementationis to
acarately estimate the a posteriori probabiliti es for ead class and then seled the most
probable dass In this case, the degreeto which a dassfier succealsin its task depends on the
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acarracy in the estimation d the a posterioris. Justifying interpreting the output adivities as a
posteriori probabilities is fundamental for the theoreticd foundition o the hybrid
ANN/HMM speech recognition paradigm discussed in se@ibn

It was proved ealy on that training networks with the mean square eror (MSE) objedive
function is equivalent to minimizing the MSE of the a posterioris. Duda and Hart (1973
formulated the proof for the smple perceptron and it was later extended to muilti-layer
perceptrons by a number of authors: Baum and Wilczek (1988, Bourlard and Wellekens
(1988, Richard and Lippman (1991, and Gish (1990. The prodfs are vaid undx the
condtion that the functional capadaty of the network exceals the functional complexity of the
a posterioris.

In ou simulations, the adossentropy error function is used. An analogous relationship
between the a posteriori probabiliti es and the output adivities of networks trained with the
crossentropy objedive function was given by Hampshire and Pealmutter (1990. They show
that the M SE objedive functionisjust aspedal case of a dassof “reasonable” error measures
that yield networks with ouput units that converge to the a posteriori probabiliti es P(c; | 0).
Here we outline asimplified version d ther proof, showing only that the aoss entropy
objective function is a member of the class of “reasonable” error measures.

An important concept of the prodf is prototypes. The input vedor spaceis partitioned into
regions o,, where P(c | o O o,) is “es®ntially” constant. The regions are cdled prototypes.
This modeling of the probability distributions is consistent with the limited resolution in the
modeling of probability density functions due to finite anourt of training data. To make the
idea of prototypes more @ncrete, we note that the prototype acncept is smilar to that of
vedor quantization, dten used in speed techndogy applicaions. In this analogy, prototypes
correspond to entries in a quantization code-book.

If we consider one particular class ¢; and let N be the total number of samples in the
training data, we can write the contribution of the error from outpui asit

1 N
E _N;Q,t

where g ; is the cntribution from unit i and samplet. Now, let us 2um over prototypes instead
of samples; let P be the number of prototypes, N, the number of samples from prototype
number p, and n, the number of samples from prototype number p. belonging to classi. Recdl
that the target 7, ru IS 1 for the n, samples belonging to classi, and Ofor the remaining N, - n,
samples. Inserting into (7), we get the following expresson for the wntribution d the dasss
unit to the error:

(20)

P N_Hn N —-n H
E, :pz_lw” N”p loga, + pr pIog(l—ap)a

(21)

where a, = a(0,) is the output adivity of the dasss unit in the RHW domain o prototype p.
The asymptotic behavior as N « is

Lipl E = pizlP(op){ P(cI |op)logap +(1— P(cI |op))log(1—ap)}

where we have replacal the expressons for relative frequency in (21) with probabiliti es (law
of large numbers). A necessary and sufficient condtion for locad optimization is that the
gradient ofE with respect ta@, is zero for all prototypes. For claswe get:

(22)
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P(Ci |op) 1- P(ci |op) —00 a, = P(Ci |op) (23)

DapEi‘—OD a I-a,
Thus, the output adivities of the network asymptoticdly approximates the a posteriori
probabilities.

The networks of our simulations are typicdly large with high functional capaaty and the
training database is fairly large, so properly trained networks doud be ale to estimate
p(ci | 0) with good acarracy. However, given the complexity of the training algorithm with
several different approximations and ad hoc parameters, an empiricd study is cdled for. In
sedion 5 such an experiment is presented and it is shown that the output adivities do indeed
approximategy(c; | 0) closely.

2.7 The “softmax” output activation function

The interpretation o the output adivities as the a posteriori phoreme observation
probabiliti es established in the previous <dion, leads to some ncen abou the
appropriatenessof the simple adivation function d the output units. If the output units are
the dassprobabiliti es and the dasses cover the entire observation space then their sum must
clealy be exadly one. However, the simple locd adivation function wsed dces not enforce
this constraint, indicaing that there is ssme redundancy in the model. This constraint can be
enforced by normalizing the adivities, yielding a more cmplex nonlocd adivation function
for the output values. A theoreticdly appeding normalization is the so cdled “softmax”
activation function (Bridle 1989; Robinson, 1994; Bourlard and Morgan, 1993),

gnet (2 4)

ina
e !

1=1

81:

where index j runs over the output units of al classes. Clealy the softmax function ensures
that the output adivities sum to ore, bu this is acomplished at the mst of some increase in
complexity. In ou framework, the softmax adivation function is implemented using
exporentia units, multiplication unts and an inverter unit as illustrated in Figure 3. The
redundancy in the model can now be diminated by removing all conredions to ore of the
output units. It is easy to show that this yields an equivalent adivation function to (24), by
showing that adding a constant bias taetl has no effect:

~ eneti eneti (2 5)

N ) - N = N
Z enetJ +bias ebiasz enetJ Z enetJ
1=1 1=1

=1

net; +bias bias

e e

Because of its theoreticd apped, the softmax function is used in the simulations, bu it
shoud be noted that the performance increases only marginally. Networks trained with
softmax tend to converge to globally more optimal locd minima (lower E), probably because
low probabilities are modeled better, bu we have seen no improvement in phoreme
recognition experiments and only a small decrease in word error-rate.
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Group of units, . . . .
e.g., alayer Output units with softmax activation

@ Multiplication unit
NN N
@ Exponential unit \

@ Inverter unit

/| @@ © ©@ ... @ /

The hidden units are connected to these units

Figure 3. Sub-network implementing the softmax activation function. The units in the top
layer computes the activities of (24). This sub-network is regarded as one single layer to other
layers of the ANN. Connections from hidden units to this output layer are connected to the
lower layer only. The internal weights of the sub-network have the constant weight 1.0 and
are not changed during training.

3 Phoneme probability estimation

In this dion we show how the theory and agorithms of sedion 2 are gplied to the
particular task of estimating the phoneme probabilities given acoustic input.

3.1 Input feature representation

The raw speed waveform is not well suited for inpu to an ANN classfier. Therefore, it is
common padice to transform the input speed signal to the short-time frequency domain
before feeding it to the phoretic dassfier. The transform used in ou experiments computes a
standard variation d the Mel cepstrum coefficients. Realers familiar with the HTK toalkit
(Yourg et al., 1995 will naticethat the feaures used here ae dmost identicd to those of its
fedure extradiontod. The procedure is discussed more daborately in (Strom, 1996. Here we
give only an outline of the procedure.

The speed signal is divided into short overlapping frames as shown in Figure 4. The
frame-rate is 100 frames per second. The DC offset in ead frame is removed and pe-
emphasis is applied to the signal. The signal of ead frame is then Hamming windowed and
padded with zero-valued samples to the nearest power of two samples, and the FFT transform
is applied to get the magnitude spedrum. In Figure 4, the different windows are shown
together with an example of a speech signal.

The magnitude spedrum of the FFT is a frequency-domain representation d the speed in
the frame & desired, bu it is gill not well suited as input to the ANN. The high frequency
resolution d the spedrum givesinpu vedors of high dmension, which requires unrecessarily
many weights to estimate in the ANN. This in turn leads to we&k estimates and poa
performance For this reason, the spedrum of ead frame is mapped to a more mwmpad
representation by a compresdng transform. This is dore in two steps. first a filter-bank is
applied to the FFT spedrum and then the wsine transform is applied to the vedor of filter-
bank ouputs. The filter-bank consists of a number of overlapping triangular, equidistantly
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spacel filters (see Figure 4) on the perceptualy motivated Mel frequency scde (Schroeder,
Ata and Hall, 1979. We use 24 Méd space filters covering the frequency range 0-8000Hz.
The msine transform is applied to the filter-bank vedor, yielding the cestrum coefficients.
The first twelve cgostrum coefficients are used, and together with the logarithm of the energy
of the frame they constitute the feaure representation that is fed to the ANN clasgfier as the
input observation.

Hamming window, 25 ms weight ' ' ' ' ' '
[ ————>
0
/ /\ 0 1000 2000 3000 4000 5000 6000 7000 8000
Herz
frame step, 10 ms
i‘_ﬁ frames
> AHZ
1 2 3 4 5 6
; ; ; ; ; i , s i 1]
0 1 20 30 40 50 60 il
L 0 L L Ly
0 200 400 600 800 1000 T ARRRNENAN i
€ T sample points EE e
FFT window, 512 sample point |
| 5!
. 0 >
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number

Figure 4. Left: Sgnd processng time anstants and a sample speed signd. The three
different time axes are 1) sample points, the sample frequency is 16k Hz, 2) msand 3 frames.
The features of a frame is computed from the signd cornvoluted with a Hamming window of
25 ms giving an effective window of about 10 ms.

Top right: Mel scaled filter-bank with triangular filters.

Bottom right: Illustration d the resulting time and frequency resolution in a spedrogram-like
plot. The uttered (Swedish) word is “Waxholnaksholm).

3.2 Delta coefficients

It is common pradice to include the first and second time-derivatives (delta efficients) of
the cepstrum coefficients in the input vedor. In the cae of the standard HMM-model, this
mainly serves the purpose of introducing some dynamic information to the dassfier. For
dynamic ANNS, the reason for including delta wefficientsislessclea. In fad, a TDNN with
a time-delay window of five frames can “lean” to extrad delta wefficients from the inpu
vedor during training as they are simply linea combinations of the input. One culd therefore
argue that, if delta wefficients are productive for the dassficaion performance they will
evolve in the network during training, and there is therefore no read for explicitly suppying
them. However, this is true only in the ided situation that there is an urlimited amount of
training data and that the optimization algorithm is perfed, i.e., finds the global optimum
regardless of the initial values of the parameters.

If we assume that the delta parameters are good feaures for representing dynamic
information, they have two advantages over the brute-force method d widening the time-
delay window to take dynamic feaures into acourt. First, the derivatives are amore mmpad
representation d the dynamics than a window of inpu frames, leading to fewer parameters to
estimate and therefore more robust estimates. Seand, the delta mefficients can be seen as a
particularly good initialization d conredion weights, leading to a more well behaved
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optimization. The interpretation d delta wefficients as a dhoice of initia weights becomes
more dea when we describe how delta and delta-delta wefficients are implemented in the
networks. Because the delta wefficients are linea combinations of the eisting inpu
adivities, they can be modeled by linea units in the network. Thus, the delta wefficients are
linear units with four in-flowing conredions with weights clamped to the values in the
following formula

1 26
d = 1_0(20t+2 Gy ~C ~ 2Ct—2) (20

where d, is the adivity of the delta wefficient unit and c., are the adivities of the original
input unit delayed x frames. Equation (26) can be derived from linea regresson and is
equivalent to the default delta wefficients of the HTK todkit (Yourg et al., 1995. Seaond
order time derivatives, so cdled delta-delta parameters, are cmputed in the same manner by
applying (26) again to the delta mefficients. Figure 5 ill ustrates the network implementation
of the delta and delta-delta units.

time

Figure 5. Implementation of delta and delta-delta coefficients in a network. The unit marked c
IS a cepstrum coefficient input unit. The units marked d and dd are the corresponding delta
and delta-delta units. The weights of the linear units implementing d and dd are clamped
according to (26).

3.3 Input nor malization

In sedion 2.5 we saw that a well-chosen weight initialization scheme is helpful for finding
goodlocd minima. For the same reasonit is aso desirable that the adivities of the inpu units
are of similar magnitude & the other units of the network. This is achieved by applying a
linea normalization to the inpu values. The wefficients of the linea transform can be
determined in dfferent ways, bu we have diosen to bese the normali zation onthe mean and
standard deviation d the inpu values in the training database. After colleding second ader
statistics, it is easy to linealy transform ead inpu to a variable with zero mean and a
controlled variance In the smulations, we enforced a standard deviation d 1.0 for al inpu
units.

The normali zation was applied to the input units using a speda normali zation step that is
performed orly for inpu/output units. The delta and celta-delta units that are not input units to
the network (but play asimilar role) are dso namalized by adding a cnredion from the bias-
unit for the mnstant off set, and scding the other connedions appropriately. The @nnedion
weights of conredions flowing into the normalized delta and delta-delta units are then
clamped and are nat atered in the badk-propagation training. After this normalization, the
adivities of the input units and the delta and delta-delta units all have mean zero and standard
deviation one.
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3.4 Network topology

The topdogy of the network, i.e., the number of hidden urits and the manner in which they
are onreded, determines the functional cgpadty of the dassfier. It has been proved (e.g.,
Hornik, Stinchcombe and White, 1989 that ANNs with ore layer of hidden unts can
approximate with arbitrary predsion any smocth function ona mmpad domain. However,
this is a theoreticd result that requires that the function is completely known and that the
number of hidden untsis unbounad. Neither of these condtions can be fully satisfied in ou
problem of phoreme probability estimation, bu it still gives ssme guidance Althowgh it is
possble that a network topdogy with more than ore hidden layer could utili ze the cnnedion
parameters in a more dficient manner to estimate the probability functions, we have limited
the experiments to networks with ore hidden layer and varied orly the number of hidden
units. The main motivation for this dedsion was to reduce the number of configurations to
evaluate in the computationally rather costly computer simulations.

The input units, the delta and the delta-delta units are wnreded to the hidden unts with a
skewed time-delay window with dynamic conredions ranging from five frames |look-ahead to
one frame delay. The motivation for the skewed window is that the hidden urits additionally
have reaurrent connedions between ead ather, with time-delay ranging from one to three
frames. The reaurrent connedions provide the hidden unts with additional information abou
the state of the network at past frames, and therefore the delayed side of the time-delay
window can be smaller than the look-ahead side. Finally, the output units are wnneded to the
hidden unts with a symmetric time-delay window from plus one to minus one frame. The
network topology is illustrated iRigure 6

The total number of conredions in the network, determining the computational effort
needed for computer simulations, can nonv be @mputed. The number of conredions
implementing the delta and delta-delta parametersis small (104) compared to the wnnedions
to and from the hidden layer. There ae 13 inpu units and therefore 3x13=39 unts in the
lowest layer (seeFigure 6). Further, let there be N units in the hidden layer and 61 uitsin the
output layer (the number of phonemes in the TIMIT database). This yields

104 + 3XNx7 + NxNx3 + Nx61x3 = 3q\? + 456N + 104 (27)

conredions in total. As an example, the moderate number of 300 hidden unts gives 406,904
conredions — a respedable number that implies a substantial computational effort for
computer simulations. This problem is addressed in sedion 4 where we show how it is
possible to reduce the number of connections without decreasing the number of hidden units.
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Figure 6. The network topology of the ANNSs. The parallelograms indicate layers, and arrows
between layers represent sets of connections from the units in one layer to units in another.
Because of the dynamic nature of the networks, there are typically several connections with
different time-delay or look-ahead between two connected units. The layer of output units is
sometimes replaced by a group implementing the softmax activation function (see section 2.7).

3.5 Dynamic decoding

The ANNSs described so far classfy 10 ms frames of audio-inpu into ore of the phoreme
classes. In the dynamic deaoding step of the ASR, this frame-based ouput from the network is
used to find the (in some sense) optimal sequence of phoremes or words. The dynamic
deading of the system used in this dudy is described in more detall in (Strom, 1996. To
summarize this gudy, the well-known hybrid HMM/ANN paradigm (Bourlard and Well ekens,
1990 is adopted, where the output adivities are interpreted as the a posteriori phoreme
probabiliti es, p(c; | 0) (see sedion 2.6). The observation probabiliti es, p(o | ¢), are derived
from the a posteriori phoreme probabiliti es using Bayes's rule. In the cae of tanhyp ouput
units, it is necessry to namali ze to the RHW range (seesedion 2.1, Equetion (3). Thus, the
observation probabilities can be written:
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(28)
p(olq) - pp()((:!(;) p(o) = % 2+ 15(—:)) for tanhyp output urits
p(olc,) = M (0) =a, plo) for the softmax activation function
p(c) p(c)

where p(c) are the a priori classfrequencies that are estimated off-line from the training data
and a. is the adivation d the output unit for phoreme i (with range [-1, 1]). The
unconditi oned observation probability, p(o), is constant for al classes andis therefore dropped
in the computations.

The Markov model for a phoreme is shown in Figure 7. The observation probability is
constant for al transitions of the phoreme model, and the transition probabilities are
maximum likelihood(ML) estimates from the durations of the training database. In additionto
the marse duration model imposed by the transition probabiliti es, a phoreme-dependent
minimum duration constraint is used. It is implemented by adding extra nodes to the HMM
and puting a self-loop onthe last node only, as shown in Figure 9. The minimum duration, m
frames, for ea phoreme is ®leded such that abou 5% of the phoresin the training data ae
shorter than mframes. The fradion 3% was chasen, after some experimenting, to ogtimize the
recognition performance. However, the improvement is very small for phoneme recognition.

A probabili stic word-class bi-gram grammar is used in the word-level evaluation and a
phoneme bi-gram grammar is used in the phoneme recognition evaluations.

d = mean phoneme
duration measured

. in 10 ms frames d
1 1 1 1
-1 1 1 1
d ! d ! d ! d 9 d
Q—»O—»O—» —>e
® | |
1 .. )
q minimum duration 4 frames

Figure 7. Phoneme HMM. Left: One-state HMM with transition probabilities expressed in
mean duration. It is easy to show that the indicated probabilities are the ML estimates of the
model parameters. The mean duration is computed from the phones of the training data.
Right: Phoneme HMM with minimum duration constraint. See the main text for details.

4 Pruning and spar se connection

The number of hidden urits determines to a large extent a network’s ability to estimate the a
posteriori probabiliti es acaurately. It is therefore desirable to experiment with networks with a
large hidden layer. Unfortunately, as wasiill ustrated by (27), the number of conredions grows
rapidly with the number of hidden unts, and that number is pradicdly boundd by the
available cmmputational resources. One muld argue that it is the number of free trainable
parameters in the network that is the important fador. In this view, it is not the number of
units, bu the number of connedions that is important. However, from experience we know
that not only the number of parameters is important, but also how they are put to use.
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In an attempt to evaluate the dficiency of the fully conreded structure that leads to (27),
we studied the statistica properties of the magnitudes of the mnnedion weights. The ideais
that the weight isan indication d the salience of an individual conredionin atrained network
(this is elaborated in sedion 4.1). Figure 8 is a histogram of the @wnredion weights in a
typicd ANN after badk-propagation training. The notable wncentration d weights close to
zero inspired us to experiment with sparsely conneded networks and conredion pruning
schemes for trained networks.
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Figure 8. Left: histogram of the connection weights in a typical network with about 123,000
connections. The x-axis shows the connection weight and the y-axis is the number of
connections in each bin. Right: the histogram converted to a probability distribution plot. The
thin line is a Normal distribution with mean zero and standard deviation 0.052. The close
agreement clearly indicates that the weight distribution is approximately normal for small
weights

4.1 Connection Pruning

If the sssumption that weights of small amplitude ae suspendable is corred, it can be seenin
Figure 8 that many conredions can pdentialy be removed. This would grealy reduce the
computational effort for running trained networks. Since pruning reduces the number of free
parameters, it can also improve the network’s generali zation ability (e.g. Le Cun, Denker, and
Solla, 199G; Sietsma and Dow, 1997, bu because we use atruncaed training scheme with a
validation set (recdl sedion 2.4), this potentia benefit is lessimportant in this gudy. Several
different criteria for seleding conredions for deletion have been suggested in the literature.
An owerview of the methods can be foundin (Thimm and Fiedler, 1995. The most well
known are smallest variance (Sietsma and Dow, 1997 and ogimal brain damage (OBD) (Le
Cun, Denker, and Solla, 199@G). The OBD method is based onalocd approximation d the
contribution o individual weights to the objedive function. If the Hessan is assumed to be
diagonal, i.e., the mixed derivatives between weights are negleded, the Mc Laurin series of E
with respect to a weiglt can be written
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E=E +WE +1 o
° Toawv 2w
where E, is a constant independent of w. Close to minima, the gradient is small so the second
term of (29) is approximately zero. Thus, if w|<<1, the @ntribution d w to E is dominated
by the third term. Le Cun, Denker and Solla show how the diagonal Hessan can be computed
with the same dgorithmic complexity as computing the gradient in a reaursive procedure
similar to the badk-propagation algorithm. The @mnredion pruning is then governed by the
“sdlience”, 0.5x 9°E/ow? x w?, of ead weight. An owerview of methods for computing
second derivatives in feed-forward ANNs can be found in (Bundine and Wiegend, 1994).

There ae three gproximations adive in the OBD method the off-diagonal terms of the
Hesgan, the higher-than-quadratic terms and the gradient’ s deviation from zero. The influence
of the gradient is easily handled because the gradient is known from the badk-propagation, and
consequently the second term of (29) does not need to be gproximated. The other two
approximations however, restricts the algorithm to operating on small weights.

In the simulations of this gudy, we base the pruning on a more simplistic saliencemeasure
using only the information gathered in the badk-propagation computations, i.e., the weights
and the gradient. The pruning implemented in the toadlkit of the Appendix, is controlled by the
two parameters andp in the following rule

O (30)
<a a<<l1

Remove the conrection with weight w iff and
O ‘ E|_ 3
3 " ow
where sensible values for a are lower than 0.10,and S is dependent on the network and the
training data, bu can be tuned to get the desired pruning aggressveness However,
experiments have indicaed that the seand constraint is much weger than the first. The same
amourt of pruning and aimost identicd network performanceis achieved by just considering
the dsolute value of the weight. Therefore, we use only the first criterionin the evaluations of
sedion 5 (or equivalently, we set 8= «). Thus, weights are simply removed if w| < a. In this
case, it iy that is tuned to get the preferred amount of pruning.

The probabili stic descent method sed for weight updeting produces weights that are the
sum of many small updating steps. Let us consider the posshility that small weights are
merely the result of the weight updating procedure. If we awume that for small weights,
individual updeting steps are independent randam variables with identicd distribution, the
resulting weights are Normal distributed (Central Limit theorem). Studying the weight
distribution d Figure 8, it is e that close to zero, the empiricdly found dstribution can
indeed be well approximated by a Norma distribution, bu for weights with a magnitude
greder than abou 0.075,this is no longer true. We cnclude that at least not all weights
greder than 0.075are mere atifads of the training procedure — a useful observation for
selection of the parametar

After pruning, the network is retrained to find the optima weights of the new, more
constrained network. The retraining converges much faster than the original training — the
network is gnaller, and typicdly a few epochs is enough. Although the main effed of the
retraining is to corred for the disturbance from the deleted connedions, a possble side-effed
is that the ANN escapes a local minimum of the error function.

(29)

w? +0(w?)
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A wegknessin the cae made for OBD by Le Cun, Denker, and Solla is that the OBD
approach is compared to, and found superior to, the smple magnitude-based method before
retraining, but no comparisonis reported after retraining. Thisis unsatisfadory sincethe dfed
of retraining is far larger than the reported dfference between the two methods. The
simulations in sedion 5 of this dudy show that, although the ssimple pruning criterionis used,
the network performance dter retraining can be equal to ar even better than that of the original
network.

4.2 Sparseconnection

Pruning the conredions of an already trained network has no impad on the computational
effort for training. To be &le to apply the pruning criterion to the cnredions, the weights of
the fully conreded network must first be trained. Therefore, a natural next step in ou efforts
to reduce the mmputational cost is to start the training with already sparsely conreded
networks. However, before training, there is no avalable information abou which
conredions are salient, so arandam set of conredions must be seleded. Of course, thisisin
genera not the optimal set, but as will be ill ustrated in sedion 5, the resulting classfier may
still be competitive.

A straight-forward randam conredion scheme is to consider al conredions in a
hypaotheticd, fully conreded network and let eady be a onredion in the adual sparse
network with probability ¢ (conredivity). The expeded number of conredions in the sparse
network is then ¢N, where N is the number of conredions in the fully conreded network. A
useful extension is to alow ¢ to be different for different sets of conredions, eg., the
conredions from the input units can be treaed dfferently than the reaurrent conredions and
the cnredions to the output units etc. Ghosh and Tumer (1994 point out that the sparse
conredivity has the dfed of dewmuging the output units, i.e., al output units are not
conreded to the same hidden urits. They report results from several comparative studies
where sparsely conneded networks perform as well as, and in some caes better than bah
OBD and fully conreded networks. Because the demuging effed is larger if connedionsin
higher layers are more sparsely conreded than lower layers, it is suggested that this is an
advantageous scheme.

Our motivation for sparse mnredionis different from that of Ghosh and Tumer in that we
focus on the reduced computational demands instead of the patential improved generali zation
ability. Becaise the number of conredions is much larger than the number of units, the
computational cost for both training and runrning the ANNSs is propartional to the number of
conredions. From (27) we seethat the number of conredions between a fixed-size layer and
the hidden layer, is propattional to the annedivity and the number of hidden urits. Thus, it is
posshle to vary the size of the hidden layer, whil e kegping the number of conredions fixed
by impasing ¢H = constant, where H is the number of hidden unts. The reaurrent units are
more problematic. By inspeding (27) again, it is e that the number of reaurrent
conredions is propational to the square of the size of the hidden layer. Therefore, for large
networks, the reaurrent conredions dominate the total number heavily. Impaosing
¢H? = constant would yield ANNs with varying hidden layer size and equal number of
conredions, bu for large H, the cnredivity would drop too fast. Initial experiments showed
that, in this case the reduction d the network’s functional capadty due to the very sparsely
conreded reaurrent connedions can nd be mmpensated for by the increased number of
hidden units.

To overcome the quadratic relationship between the layer size and the number of hidden
units, locdized conredivity is introduced. Reaurrent conredions are added with probability
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u exp(-d[u,u,] / g), where d[u,,u,] is the distance between unt u, and unt u,, i is the overall
conredivity constant, and o is a onstant of “spread”. Distance is Smply defined as the
differencein ordering number within the layer, e.g., the distance between the 5 and the 17"
unit is 12. Thus, the self-loop conredivity is u, and o controls how fast the conredivity
deces as afunction d distance In the simulations, we use ;1= 1.0and o is varied to control
the number of connectionBigure 9illustrates the connectivity for the cage 20.

Locd conredivity has previously been used primarily for sets of units with an intuitively
clea metric, e.g., in charader recgnition (e.g., Le Cun et al., 19900 where the units
correspondto pasitions on a two-dimensional surface and aher tasks related to vision. In
these tasks the locd conredivity is often combined with weight-sharing to impose plausible
task-dependent symmetry condtions (Le Cun et al., 19900). In the speed field, a metric can
be defined by some scde on the frequency dimension in filter-bank representations of the
input feaures. An experiment with locd conredivity based onthis metric is reported by Basu
and Svendsen (1993, bu the recognition acarracy is too low baoth for the baseline and the
locdly conreded network for any definite nclusions. In contrast to the mentioned
experiments, the hidden layer of our networks has no metric that refleds sme structure of the
problem. The intuition kehind the locd conredivity scheme in this case, is that sub-groups of
units with many connedions conreding the group, may promote the development of unit
clusters that solves sub-tasks efficiently. The underlying assumption is that bre&ing up the
clasgficaion problem into sub-tasks leads to better locd minima. The aumption is not self-
evident but, empiricdly we have foundthat the loca conredion scheme outperforms smple
sparse connection when the total connectivity is low (see sé&jtion
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Figure 9. Connectivity in the hidden layer with localized connection rule. Connections are
added with probability u exp(-d[uy,uUz] / ©). Top: the connection probability with u = 1.0 and
o = 20. Bottom: sample layer with recurrent connections from one unit indicated.
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5 Recognition results

The phoreme probability ANNs have been evaluated in two dfferent experimental
environments. The system used in the evaluations was devel oped for speed recognitionin the
WAXHOLM human/machine dialog system (Blomberg et al., 1993. The Swedish database
colleded in the development of that system (Bertenstam et al., 199%,b) is used for evaluation
on the word level. Many aspeds of the word reagnition wsed in the WAXHOLM system are
not covered in this paper, bu the reaognition modue of the system is acourted for in depth
by Strém (1996. In addition to the word-level evaluation, phomme recognition onthe well -
known American English TIMIT database (Zue, Seneff and Glass 1991 has been performed
to be ale to cdibrate the performance against other systems. The dewder from the word
recognizer of the WAXHOLM system was used also for the phoreme recogniti on experiments
by simply assigning a word to each phoneme.

Word/phore aror-rate is computed in the standard dynamic time warping (DTW)
alignment fashion, i.e., the reaognized string of symbadls is optimally aligned with the correa
string by minimizing an oljedive function that penalizes substitutions with the value 10 and
deletions and insertions with 7. The eror-rate is defined as the total number of substitutions
(S), ddetions (D) andinsertions (1) divided by the number of symbals (N) in the rred string,
i.e., (S+D+I)/N.

5.1 Phonemerecognition resultson the TIMIT database

No ather databases have been so thoroughly illuminated by different research sites using a
multitude of methods for phoreme reaognition, as the TIMIT database. Table 3 shows a few
of the numerous reported recognition results for different methods.

The training and test partition d the database a well as the smaller core test-set is defined
in the documentation dstributed with the database. All training utterances except the so cdled
“sa-sentences’ were used for training. For evaluation, we those to focus on the @re test-set
because it is better dialect and gender balanced than the full set.

The phoreme set to use for evaluation is not equally standardized. The 61 symbals of the
database ae sometimes considered a too rarrow transcription for pradicd use, and are
therefore ollapsed into a smaller number of classes. In this gudy we perform evaluations
using the 39 phoreme set defined in (Lee ad Hon, 1989 that have evolved into an undficia
standard for phoreme reaognition experiments. However, in conformity with the study of
Robinson (1994, the full 61 symbadl set is represented in the output layer of the ANN as well
as in the phoreme bigram grammar of the dynamic deading. After reaognition, the
recognized symbol string is mapped to the 39 phoneme set for evaluation.

The badk-propagation training, described in detall in sedion 2, was terminated after 30
epochs for al networks. In all cases, the leaning curve had leveled ou after this amourt of
training (sed-igurel3).
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Author(s) Method Full test set | Core set

Lee and Hon, 1989 Continuous density HMM 33.99

Digalakis, Ostendorf and | Stochastic segment model 36.0 ¢

Rohlicek, 1992

Lamel and Gauvain, 1993 Continuous density HMM 30.9 %

Goldenthal, 1994 Trajectory model 30.5%

Robinson, 1994 Recurrent ANN 25.0 9 26.1 %

Mari, Fohr, and Junqua, | 2" order HMM 31.2%

1996

Glass, Chang, and Feature based recognition 30.5%

McCandless, 1996

Strom, 1997 (this paper) | Sparse, Recurrent, Time-delay 27.0 % 27.8 %
ANN

Table 3. A few reported phoneme recognition results for the TIMIT database. Phone error-
rates are given for the full test set and the core test separately. The core test set is dightly
harder to recognize because of its more balanced dialect and gender distribution. The error-
rate of the best network of this paper is lower than all other reported results except the
recurrent network of Robinson (1994).

5.1.1 Experiments with varying connectivity

An ensemble of networks with the topdogy described in sedion 3.4, and varying conredivity
and hdden layer size have been trained and evaluated. The @nnedions were divided into
three sets: A) the conredions from the cepstrum feaure units to the hidden unts, B) the
reaurrent conredions of the hidden layer and C) the cwnnedions from the hidden layer to the
phoreme output units. Sets A and C were sparsely conreded by randamly seleding a portion
of the omnredions of afully conrneded network (controlled by the ¢ parameter), and set B was
conreded using the locdized conredion scheme defined in sedion 4.2 (controlled by the o
parameter). Motivated by preliminary experiments, a hidden layer of 300 unts was ®leded
for astudy of the dfed of varying the conredivity. More hidden unts give higher recognition
results, bu the priceis longer training times, and it was assumed that 300 unts is enough for
making experiments that yield insights that scde up to larger networks. In Figure 10 the
phoneme recognition results with 300 hidden units are shown.

A fully conreded network with 100 hdden untsis included in the figures for comparison,
but it is clealy outperformed by the sparsely conreded ANNs. Compare for example, the
underlined error-rates igure 10 for two networks with the same number of connections.

The first two sweeps in Figure 10 show how the dassficaion performanceis affeded by
increasing the cnredivity in the reaurrent conredions. It can be seen that the sweeg with
10% conredivity (¢= 0.10 for the non-reaurrent conredions gives a better trade-off between
performance and number of connedions, indicating that the number of reaurrent connedions
should optimally be relatively large compared to the other types of connections.
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5.1.2 Decoupling the output units

The four rightmost columns of Figure 10 was designed to test the hypothesis of Ghosh and
Tumer (1994, that the cnnedions to the output (phoreme) layer shoud be more sparse than
the lower layer, to decoupe the output units. As can be seen, thisis uppated by our results —
a fad that will be utilized in future experiments to design more dficient networks. In
summary, the eperiments with 300 uits and varying conredivity indicates that high
conredivity shoud be asgned to the conredions from the inpu to the hidden urits, low
conredivity shoud be assgned to conredions to the output units, but the number of reaurrent
connections should be relatively large.
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o for recurrent connections 10 25 35 50 10 25 35 25 25 50 50
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error-rate 36.1% 33.1% 31.0% 29.1% 28.9% 32.3% 30.5%29.1% 28.7% 29.5% 28.3% 30.5%

Figure 10. Phone error-rate for an ensemble of networks with 300 hidden units and different
connectivity. Error-rate is defined as the total number of insertions, deletions and
substitutions per phone. A fully connected ANN with 100 hidden units is also included for
comparison. By comparing the underlined results, it is clearly seen that the fully connected
network is outperformed by its sparsely connected counterparts with an equal number of
connections.

5.1.3 Varying the hidden layer size

To aso probe into the hidden layer size dimension, a series of networks with identicd
conredivity, but varying number of hidden unts, was trained and evaluated. The results of
this sveg of simulations are shown in Figure 11 It is ®e that the eror-rate is gedlily
deaeasing with increasing number of hidden urits. This figure ill ustrates the most important
advantage of sparsely conrneded ANNSs — sparse @wnnedion schemes allow us to work with
larger hidden layers, with acaompanying reduction in error-rate, than atherwise possble. For
comparison, a fully conneded network with 600 uiits would have 1,353,704conredions
(Equation (27)).
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Figure 11. Phone error-rate for an ensemble of networks with varying hidden layer size. The
connection probability is 25% (= 0.25) for all non-recurrent connections and the
connectivity parameter o is 25 for all layer sizes. The fully connected network with 100
hidden unitsisincluded for comparison.

5.1.4 Connection pruning in trained networks

Conredion puning, as described in sedion 4.1, has no impad on the computational effort for
training. Insteal it adds an additional training phase for retraining the conredion weights after
pruning. However, it was foundin ou experiments that this training is much faster than the
first phase — a few epochs is usualy enough for convergence Figure 12 shows the phore
error-rate & afunction d the aggressvenessof the pruning on the network with 600 uiits. It
IS interesting to compare the eror-rate for different pruning thresholds with the probability
distribution o Figure 8. Note that the distribution ceviates from the Normal distribution for
weights greder than abou 0.075.1t is aso for pruning threshads gredaer than 0.075that the
performance starts to drop significantly.

Pruning can in some caes increase dasgficaion performance because the reduced number
of parameters can improve the network’s generalization ability. The simulations diow an
improved performance dter moderate pruning and retraining, bu the caise is nat clea; the
classficdion performance increased on bdh the training and test data. It is possble that the
cause of the improvement is that the disturbance due to the pruned connedions caused the
ANN to escgpe from a locd minimum of the eror function. The phore eror rate of this
pruned network is the best performing ANN of this gudy, therefore an evaluation onthe
whoe TIMIT test set was performed with this network. The result, 27.0% error rate is
included inTable 3

An attradive feaure of pruning is the reduced computational effort for running trained
networks. In Figure 12 it can be seen that pruning with the weight magnitude aiterion o
sedion 4.1 and the parameter o set to 0.05yields a network reduction d abou 50% withou
reduction in performance Becaise the number of conredions is propationa to the
computational cost of runrning the network, the arrespondng speed-up can be very important
in red-time recognition systems. It is natable that the most aggressvely pruned network, with
only abou 13,000conredions, performs the phoreme recognition task more successully than
the fully connected network with about 75,000 connections.
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Figure 12. Phoneme recognition result for the original ANN with 600 hidden units (also
shown in Figure 12) of Figure 11, and for pruned versions after pruning and retraining.

5.1.5 Computational considerations

The original motivation for the experiments with sparse cnredion and connedion puning
was to reduce the time for training and spead up the evaluation d the networks. The
computational effort for performing the forward as well as the badkward phese of the bad-
propagation algorithm is dominated by a term propational to the number of conredions in
the network. Thus, the training time is propational to the number of conredions times the
number of epochs neeaded for convergence and the esaluation spedl is propationa to the
number of connections in the network.

The anournt of computation for training different ANNs can only be mmpared in the
context of some termination criterion. In this gudy, the training was always terminated after
30 epaochs of training with the TIMIT training. In this case, the anourt of computation is only
dependent on the number of conredions. A more sophisticaed termination criterion may
consider the rate of improvement per epoch. By inspeading Figure 13, we seethat the training
error function levels out after between fifteen and twenty-five gochs for al networks. Thus,
comparison kased on ory the number of conredions may be dlightly too simplistic. However,
the diff erence due to the number of conredions is by far the most important facdor. Compare
for example the sparsely conneded network, with 100 hdden urits, with its fully conreaed
courterpart. The training progress curves in Figure 13 are similar, bu the fully conreaed
network has more than three times as many connections.

The total training time for the ANN with 600 uiits and 155,00Qconredions was abou 11
days onan HP C180workstation. Training times for the other ANNs are in propartion to their
number of connections.

The evauation d the trained networks can be performed in red time or faster for all
networks with lessthan 110,000conredions. For example, the best performing network of
the study, the moderately pruned network in Figure 12 with 600 unts and 109,000
connections, runs in 99% of real time on the HP C180 workstation.
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Figure 13. Training error as a function of number training epochs for six different networks.
The dashed line indicates the training progress of the fully connected network with 100
hidden units, and the other five lines are the progress for the other ANNs with varying number
of hidden units (the networks are the same asin Figure 11).

5.1.6 Test of theinterpretation of activities as a posteriori probabilities

In sedion 2.6 it was shown that in theory, the output adivities are estimators of the a
posteriori phoreme observation probability. To test this empiricdly, statistics were mlleded
for the adivities of a typicd ANN of this gudy. The a posteriori probability was estimated
from the target values for bins of adivity ranges. Thus, for ead hin, the relative frequency
was computed for eatr phoreme. Then the probability estimated by the ANN was plotted
versus the relative frequency. Figure 14 shows the resulting histogram. The proximity to the
Bayes classfier function suppats the aumption that the adivities can be interpreted as a
posteriori probabiliti es. However, the ANN tends to assgn too high probabiliti es when the
adua aposteriori probability is above 0.3. This is a good illustration d a slight over-
adaptation to the training data. The deviation for both sets at the lowest bin is a refledion o
the large number of adivities that have values much lessthan 0.05 the resulting observed
relative frequencies of abou 0.01are atifads caused by uneven dstribution o the data within
this bin.
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Figure 14. Estimated phoneme probability versus relative phoneme frequency. The frames of
the training and test data respectively have been partitioned into bins with different output
activity (in the RWH, [0;1] domain). The y-axis is the relative phoneme frequency computed
from the targets in each bin. The shown relative frequency is the averaged statistics over all
phonemes. The diagonal line is the optimal Bayesian classifier function. We see that the ANN
Is very close to a Bayessian classifier on the training data but deviates slightly from the ideal
line for the test data.

5.2 Word recognition resultson the WAXHOLM human/machine dialog task

The WAXHOLM demonstrator (Blomberg et al., 1993 is a human/madine spoken dialogue
system for tourist information abou the Stockhalm archipelago. More spedficdly, the domain
is boat traffic timetables and information abou haotels, camping grounds and restaurants. A
description d the ASR modue of the WAXHOLM system is given in Strom (1999. In this
paper, the WAXHOLM database (Bertenstam et al., 199%.b), colleded in wizard-of-oz
simulations of the system, is used in recognition experiments to evauate the hybrid
HMM/ANN system on the word-level as well as the phoreme-level. The utterances are
continuously spoken and the bigram perplexity is 28 for the test data.

The eperience with the TIMIT database led us to train a network with the following
topdogy, 300 hdden unts, 5% conredivity for conredions from the inpu units, o= 25for
the reaurrent conredions and 10 conredivity for the conredions to the output units. The
phore eror-rate atieved is 25.26 and the word error-rate is 23.26. For comparison, a fully
conreded network with 125 hdden unts was trained. As can be seen in Table 4, the fully
conreded ANN performs worse than the sparsely conreded ANN, in spite of the benefit of
12% more connections.

Our results can be mmpared with a @ntinuows density HMM system (Hogberg and
Sjolander, 1999, trained and evaluated on the same database & used in this gudy, yielding
25% phore aror-rate, and later in (S 6lander and Hogberg, 1996 22.68% phore aror-rate, and
only 14.7% word error-rate. All results are summarizetahle4.

In contrast to the TIMIT database, the phoreme recognitionis dightly worse for the ANN-
based system than the HMM. The reasonis nat clea, bu the WAXHOLM database is snall er
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and hes lesscontextual variation kecause of its domain dependent origin. However, it is the
differencein word reaognition rate that is the most naticeale. Clealy, the recognition results
for the ANN system on the word-level are not equally competitive as on the phoneme-level.

Baseline, fully
connected network,
125 hidden units.
98,175 connections

Sparsely connected
network, 300 hidden

Tri-phone CDHMM
recognizer..
(Sjolander and
Hogberg, 1996).

phone error rate
word error rate

27.5%

24.1%

units.

86,903 connections.
25.2%
23.2%

22.6%
14.7%

Table 4. Recognition results on the WAXHOLM database.

One diff erence between ou system and state-of-the-art HMM systems is that we do nd use
context-dependent models that are likely to be more helpful on the word level. Context-
dependent models have been used in hybrid ANN systems with improved word reaognition
rate & aresult (Bourlard and Morgan, 1993 Kershaw, Hochberg, and Robinson, 199§. The
word error rate improvement reported by Kershaw, Hochberg, and Robinson, (1996 is abou
19% (from 16% to 13%). Let us peaulate that we would get the same reduction if context
independent models were introduced in our ANN system. In this case the aror rate would still
be & high as 18.9%6 — significantly higher than for the HMM system. This indicaes that there
is al'so some other differencethat manifestsitself in the discrepancy between the word and the
phoneme level.

The main dfferencein the gplicaion d the phoreme probabiliti es, between the word and
the phoreme levd, is that on the word level small probabiliti es are frequently employed in
order to med the word constraints from the lexicon. This happens much more seldom in the
phoreme reaognition case, becaise of the weder top-down constraints. If this is the aiticd
difference between the two levels, ore can susped that the estimation o small probabiliti esis
worse in the ANN than the standard HMM. This appeas to be aplausible explanation, bu it
is noteworthy that there is no evidencefor that hypothesisin Figure 14, where insteal it seems
as if small probabilities are estimated more accurately.

6 Conclusions

Pruning and sparse conredion were utilized to be @le to train and evaluate large ANNSs for
phoreme probability estimation. Sparse wnredion made training of networks with large
hidden layers and an elaborate dynamic connedion scheme paossble. Wide time-delay
windows in combination with multiple time-delays in reaurrent conredions was used. A
locdized sparse mnredion scheme for reaurrent conredions removed the quadratic relation
between the size of the hidden layer and the number of conredions. This opened the
posshility to work with reaurrent ANNs with large hidden layers. Withou sparse wnredion,
the training would have required more computational resources than practically realistic.
The networks were evaluated ontwo dfferent tasks: phoreme recognition onthe TIMIT
database, and word reaognition onthe WAXHOLM database. The lowest error-rate adieved
on the wre test set of the TIMIT database, 27.8%6, compares favorably with systems using
other methods. The only lower error-rate reported is from another ANN based system
(Robinson, 1994. The word-level results on the WAXHOLM database ae not as good as the
phoreme results. A continuous density HMM trained and evaluated on the same data & the
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ANN system performed significantly better. One reason for the @ntrast is that context-
independent models are used, but it is not clear if this accounts for the whole difference.
Pruning reduces the mmputational demands of trained networks, which is of grea
importance in red-time rewgnition systems. A reduction by 50% can be acomplished
withou degraded performance Also, moderate pruning improves the performance, either due
to an increased generali zation ability or becaise the network is al owed to escgpe from a locd

minimum of the error function.

Sparsely conreded networks were shown to uili ze the free parameters more dficiently
than fully conreded ANNSs. In the phoreme rewgnition experiments, fully conreded
networks were dealy outperformed by their sparsely conreded courterparts with equal or
fewer conredions. For example, in the TIMIT experiments, a network with oy 13,000
conredions was more successul than the fully conrneded network with 75,000conredions,
and a sparsely conneded network with lessthan 75,000conredions achieved as much as 21%
lower phone error-rate than the fully connected ANN.

The toalkit used for al ANN simulations, including source-code and dacumentation, is
fredy avail able by anonymous ftp onthe Internet. By making the software fredy avail able, the
results of the experiments can be validated by other researchers, and by giving essy accessto
an ANN toolkit for speech recognition, we wish to promote further development in the field.
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Appendix: The NICO neural network toolkit

All ANN simulations of this dudy are performed using the NICO (Neura Inference
COmputation) toadlkit. It is a software only solution, written in patable ANSI C code and the
complete toalkit, including source @de, can be downloaded from the World Wide Web hame-
page http://www.speech.kth.se/NICO/index.html. The home page dso contains the latest
updated on-line documentation.

In this appendix, the commands for building and training the ANN for the TIMIT
experiments are presented. Frame level classficaion performance can be evaluated with the
CResult todl. The dynamic demding however, is not included in the NICO todkit, and
therefore alditional software is necessary to perform evaluation onthe phoreme-segment and
word levels. In this case, the Excite tod can be used to compute and store the output adivities
in one of several supported data formats.

A.1 Structuring the database

The training tods, feaure ectradion and target generation tools operate ather on the data-
files of one utterance or on a set of utterances Pedfied in a script-file. All files correspondng
to the same utterance shoud have the same base-name. For example, if the wave-form sample
fileis cdled homer.wav then the names of the fedure file and the phoreme target files can be
homer.mfcc and homer.targ. Thus, spedfying the base-name and the gpropriate file-
extensions and dredories for the different types of data, is enowgh to give the tods
knowledge of where to find data. Typicdly, a ommand-line agument to atood spedfies the
base-name and the various extensions and dredories are given as command-line options to
the tod. A script-file for processng a set of base-names is invoked by the option -S. In this
case, the agument that was otherwise the base-name is interpreted as the name of the script.
The script-file itself is a list with one base-name per line.

The described conventions for data-files imply that al files of ead type, eg., al wave-
form files, must be in the same diredory. Although this flat structure is often convenient, it
causes problems when the todlkit is used with a database with a different inherent structure,
such as the TIMIT database. A solution is to creae new diredories for the interesting file-
types and make symbdlic links to the physicd files residing in the nonflat database. An
example of a c-shell script file that creates the necessary links are shoabiarb

#lcsh

# set this variable to the directory of the TIMIT database
set TIMITDIR = CDROM/TIMIT

# set these variables to where you want to store links to
# wave-form files and phoneme label files

set WAVEDIR = ~/waveform

set PHONEDIR = ~/phmlab

foreach CATEGORY ( ${TIMITDIR}train ${TIMITDIR}/test )
foreach DIALECT ( ${CATEGORY}/dr?)

pushd ${DIALECT}

foreach SPEAKER (*)
pushd ${SPEAKER}
foreach FILE (*.wav)

In -s ${DIALECT}${SPEAKER}/${FILE} $WAVEDIR/${ SPEAKER}_${FILE}

end
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foreach FILE (*.phn)
In -s ${DIALECT}${SPEAKER}/${FILE} $PHONEDIR/${ SPEAKER} ${FILE}

end
popd

end

popd

end
end

Table 5. This script is used to create symbolic links to the wave-form and phonetic label files
of the TIMIT database.

A.2 Feature extraction

The tod Méelfib implements a standard fedure extradion, kased ona Mel-scded filter-bank
computed from the FTT spedrum. The -c option seleds cepstrum feaures instead of filter-
bank. Seesedion 3.1, or (Strom, 1996 for a more extensive discusson d this procedure. In
the following example it is assuumed that the diredory ~/waveform contains links to
waveform files of the TIMIT database, all_utterances is a script-file with the base-names of
the utterances to process, atithfcc is the directory to for storing the feature files.

>Melfib -S -Fnist -n24 -c12 -E -e0.97 -d ~/mfcc -xmfcc -p ~/waveform -qwav
all_utterances

A.3 Generation of phoneme tar gets

The phoreme target for eadr 10 ms frame of the feaure files can be etraded from the
phoretic transcription files of the database. The tod Lab2Targ does this by cheding the
length of the parameter files and wsing the time-marks of the transcription files to compute the
targets for ead phoreme output unit at ead frame (see &so sedion 2.1). In this example, it is
asumed that the diredory ~/mfcc contains the parameter files creaed in the previous ®dion,
~/phmlab contains links to the phoretic transcription files of the TIMIT database,
all_utterances is a script-file with the base-names of the utterances to process and
~/phmtarg is the diredory for storing the target files. The names of the 61 phoremes $oud
be supplied in the filphoneme_set, one phoneme per line.

>Lab2Targ -S -p ~/phmlab -gphm -d ~/phmtarg -x targ -P ~/mfcc -Qmfcc -lhtk
-Ltimit -Fcodebook phoneme_set 13 all_utterances

A.4 Specifying the network structure

The todkit has many commands for buil ding the structure of the networks. Here we give the
commands with a minimum of commentary. Detailed information abou the commands is
foundin the toakit documentation. The commands for building a network with 300 hdden
units, conredivity 25% in conredion sets A and B, and conredion parameter 0=50 for the
recurrent connections (see secttof) are as follows.

>CreateNet timit300.rtdnn timit300.rtdnn

>AddStream -x mfcc -d ~/mfcc -F htk 13 r CEP timit300.rtdnn

>AddGroup cep timit300.rtdnn

>AddUnit -1 -u 13 cep timit300.rtdnn

>LinkGroup CEP cep timit300.rtdnn

>MakeDiff cep diff1sttimit300.rtdnn

>MakeDiff diff1st diff2nd timit300.rtdnn

>AddStream -x targ -d ~/phmtarg -Fcodebook timit300.rtdnn -S phoneme_set 61 t
PHONEME timit300.rtdnn
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>AddGroup phoneme timit300.rtdnn

>AddUnit -0 S phoneme_set phoneme timit300.rtdnn

>LinkGroup PHONEME phoneme timit300.rtdnn

>SetType -O cross phoneme timit300.rtdnn

>AddGroup param timit300.rtdnn

>Move cep network param timit300.rtdnn

>Move difflst network param timit300.rtdnn

>Move diff2nd network param timit300.rtdnn

>AddGroup features timit300.rtdnn

>AddUnit -u 300 features timit300.rtdnn

>Connect -D -1 5 -s25 param features timit300.rtdnn

>Connect -D -1 1 -s25 features phoneme timit300.rtdnn

>Metricnct -s25 -D 1 3 features features timit300.rtdnn

These commands creaes and modifies a binary file timit300.rtdnn hdding all parameters
of the network. The aeaed network can nov be examined with the Display command.
Display has many options and can display all properties of a network. Detail s are foundin the
toolkit documentation. Enter for example the command

> Display timit300.rtdnn
to see an overview of the network (number of connections and units etc.).

So far we have aeaed an ANN with simple uncouded ouput units. The following
commands alter the output layer to a softmax activation function (see s&@jion

>AddGroup softmax timit300.rtdnn

>SetType -x phoneme timit300.rtdnn

>SetType -n phoneme timit300.rtdnn

>Move phoneme network softmax timit300.rtdnn

>Rename phoneme softin timit300.rtdnn

>AddGroup phoneme timit300.rtdnn

>AddUnit -r0.0 -0 -S phoneme_set phoneme timit300.rtdnn

>Remove -c phoneme bias timit300.rtdnn

>SetType -m phoneme timit300.rtdnn

> SetType -O cross phoneme timit300.rtdnn

>Move phoneme network softmax timit300.rtdnn

>Pipe -w1.0 softmax.softin softmax.phoneme timit300.rtdnn

>AddGroup internal timit300.rtdnn

>AddUnit -r0.0 softsum timit300.rtdnn

>Move softsum network internal timit300.rtdnn

>Move internal network softmax timit300.rtdnn

>SetType -d softmax.internal.softsum timit300.rtdnn

>Connect -w1.0 softmax.softin softmax.internal.softsum timit300.rtdnn

>Connect -w1.0 softmax.internal.softsum softmax.phoneme timit300.rtdnn

>NormStream -c 1 0 -s PHONEME timit300.rtdnn

>LinkGroup PHONEME phoneme timit300.rtdnn

>Protect -R softmax.softin timit300.rtdnn

>Protect -S softmax.phoneme timit300.rtdnn

>Protect -P softmax.internal timit300.rtdnn

A.5Training

The command for normalizing the input units is
>NormStream -S -s CEP -d1.0 timit300.rtdnn train_utterances
and the normalization of the delta and delta-delta features is performed by

40



Nikko Strém, Phoneme Probability Estimation with Dynamic Sparsely Connected Artificial Neural Networks

>NormGroup -S -g difflst -d1.0 timit300.rtdnn train_utterances

>NormGroup -S -g diff2nd -d1.0 timit300.rtdnn train_utterances
where train_utterances is a script hading the basenames of al training utterances. Note that
these coommands colled statistics from the whale training database, and therefore take some
time to run.

The most important training too of the todkit is BackProp. It implements the training
scheme described in sedion 2. In this example we asume that train_utterances is again a
script with the training utterances and validation_utterances is a script with the validation
utterances.

>BackProp -S -m0.7 -gle-5 -i30 -F 20 30 -p logdfilelog -B 0.5 10 -V
validation_utterances PHONEME timit300.rtdnn train_utterances

A.6 Frame-leve evaluation

Althogh the todkit does not have tods for evaluation onthe segment level, it is passble to
evaluate the frame dasdficaion performance i.e., how frequently the wrred phoreme has
the highest output adivation. The tod to use is CResult. This example is an evaluation d the
classficdion d the 61 phoremes. It is assumed that test_utterances is a script with the test
utterances. The CResult tod has many options, e.g., confusion matrix, top-N evaluation, etc.
Details can be found in the toolkit documentation.

>CResult -S timit300.rtdnn test_utterances

A.7 Connection pruning

The mnredion puning of trained networks that is described in 4.1 is performed easily with
the Prune todl. For example, pruning the network timit300.rtdnn with a = 0.1,and 3 = o, the
following command is used.

>Prune -w 0.1 timit300.rtdnn
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